Plots an h-scattergram (D.A. Murray).
Options
LAGCLASS = scalar or variate |
The lag classes to be displayed in the plots; default all lag classes |
|---|---|
ARRANGEMENT = text |
Specifies whether to display the plots individually or with multiple plots on the same page (single, multiple); default mult |
Parameters
DATA = variates |
Observations as a variate |
|---|---|
LAGPOINTS = pointers |
Lag classes, indexes to observations and directions for plotting |
Description
DHSCATTERGRAM plots an h-scattergram of all values of z(x) against z(x+h) within a lag class. H-scattergrams are useful for identifying outliers that can skew the average semivariance variance within a lag class. The plot displays a 1 to 1 reference line and the closer the points lie to this line the stronger the correlation and the smaller the semivariance.
The observations should be supplied using the DATA parameter within a variate. The data for the lag classes can be taken directly from the FVARIOGRAM directive. The parameter LAGPOINTS corresponds to the parameter with the same name in FVARIOGRAM. The elements of LAGPOINTS contain:
1. variate of lag classes
2. variate of indices for z(x)
3. variate of indices for z(x+h)
4. factor of directions
By default an h-scattergram is produced for every lag class. However, you can select a subset of these by supplying the lag numbers in either a scalar or variate using the LAGCLASS option. The ARRANGEMENT option controls whether the plots are each drawn on separate pages or as a multiple plot in a 4 by 4 or 9 by 9 arrangement.
Options: LAGCLASS, ARRANGEMENT.
Parameters: DATA, LAGPOINTS.
Action with RESTRICT
If the data variates are restricted, only the units not excluded by the restriction will be used.
Reference
Webster, R. & Oliver, M.A. (2007). Geostatistics for Environmental Scientists, 2nd edition. Wiley, Chichester.
See also
Directives: FVARIOGRAM, KRIGE.
Commands for: Spatial statistics, Graphics.
Example
CAPTION 'DHSCATTERGRAM example',!t(\
'Variogram of potassium levels at Brooms Barn',\
'Experimental Station (see Webster & Oliver 2007',\
'Geostatistics for Environmental Scientists, Wiley).');\
STYLE=meta,plain
READ East,North,K
1 24 26.0 1 25 22.0 1 26 18.0 1 27 19.0 1 28 26.0
1 29 23.0 1 30 32.0 1 31 28.0 2 19 55.0 2 23 19.0
2 24 18.0 2 25 17.0 2 26 15.0 2 27 16.0 2 28 19.0
2 29 15.0 2 30 24.0 2 31 14.0 3 1 28.0 3 2 26.0
3 3 23.0 3 4 21.0 3 5 22.0 3 6 22.0 3 7 24.0
3 8 41.0 3 9 30.0 3 10 20.0 3 11 22.0 3 18 22.0
3 19 26.0 3 23 16.0 3 24 18.0 3 25 15.0 3 26 16.0
3 27 15.0 3 28 16.0 3 29 14.0 3 30 20.0 3 31 15.0
3 12 70.0 3 13 20.0 3 14 22.0 4 2 24.0 4 3 23.0
4 4 20.0 4 5 24.0 4 6 20.0 4 7 20.0 4 8 34.0
4 10 18.0 4 11 18.0 4 12 21.0 4 13 18.0 4 14 22.0
4 15 28.0 4 16 25.0 4 17 28.0 4 18 24.0 4 19 23.0
4 23 16.0 4 24 18.0 4 25 17.0 4 26 16.0 4 27 19.0
4 28 21.0 4 29 13.0 4 30 15.0 4 31 15.0 5 4 24.0
5 5 23.0 5 6 22.0 5 7 25.0 5 9 19.0 5 10 20.0
5 11 19.0 5 12 20.0 5 13 16.0 5 14 16.0 5 15 20.0
5 16 28.0 5 17 21.0 5 18 28.0 5 19 24.0 5 23 18.0
5 24 15.0 5 25 14.0 5 26 15.0 5 27 19.0 5 28 20.0
5 29 15.0 5 30 14.0 5 31 16.0 6 5 28.0 6 6 22.0
6 7 26.0 6 8 27.0 6 9 19.0 6 10 19.0 6 11 15.0
6 12 19.0 6 13 18.0 6 14 20.0 6 15 19.0 6 16 27.0
6 17 29.0 6 18 35.0 6 19 25.0 6 23 16.0 6 24 14.0
6 25 15.0 6 26 16.0 6 27 16.0 6 28 16.0 6 29 16.0
6 30 15.0 7 7 24.0 7 8 24.0 7 9 24.0 7 10 23.0
7 11 22.0 7 12 16.0 7 13 19.0 7 14 16.0 7 15 20.0
7 16 18.0 7 17 27.0 7 18 58.0 7 19 24.0 7 23 18.0
7 24 14.0 7 25 17.0 7 26 17.0 7 27 14.0 7 28 18.0
7 29 15.0 7 30 28.0 8 7 24.0 8 8 23.0 8 9 24.0
8 10 21.0 8 11 16.0 8 12 23.0 8 13 20.0 8 14 26.0
8 15 18.0 8 16 25.0 8 17 20.0 8 18 44.0 8 19 24.0
8 23 53.0 8 24 12.0 8 25 12.0 8 26 15.0 8 27 15.0
8 28 16.0 8 29 18.0 8 30 21.0 9 4 24.0 9 5 20.0
9 6 20.0 9 7 18.0 9 8 20.0 9 9 24.0 9 10 18.0
9 11 23.0 9 12 32.0 9 13 33.0 9 14 27.0 9 15 32.0
9 16 27.0 9 17 26.0 9 18 54.0 9 19 38.0 9 21 *
9 20 58.0 9 22 96.0 9 23 23.0 9 24 17.0 9 25 18.0
9 26 20.0 9 27 18.0 9 28 17.0 9 29 21.0 9 30 23.0
10 2 33.0 10 3 24.0 10 4 20.0 10 5 18.0 10 6 19.0
10 7 21.0 10 8 20.0 10 9 21.0 10 10 20.0 10 11 23.0
10 12 31.0 10 13 27.0 10 14 29.0 10 15 30.0 10 16 21.0
10 17 24.0 10 18 60.0 10 19 20.0 10 20 24.0 10 21 30.0
10 22 32.0 10 23 29.0 10 24 25.0 10 25 21.0 10 26 28.0
10 27 35.0 10 28 20.0 10 29 21.0 10 30 24.0 11 2 36.0
11 3 29.0 11 4 24.0 11 5 26.0 11 6 22.0 11 7 20.0
11 8 20.0 11 9 23.0 11 10 24.0 11 11 26.0 11 12 30.0
11 13 42.0 11 14 38.0 11 15 42.0 11 16 38.0 11 17 40.0
11 18 38.0 11 19 25.0 11 20 24.0 11 21 34.0 11 22 25.0
11 23 20.0 11 24 21.0 11 25 22.0 11 26 25.0 11 27 20.0
11 28 27.0 11 29 27.0 11 30 19.0 12 2 32.0 12 3 27.0
12 4 28.0 12 5 23.0 12 6 22.0 12 7 20.0 12 8 21.0
12 9 23.0 12 10 24.0 12 11 20.0 12 12 29.0 12 13 42.0
12 14 36.0 12 15 42.0 12 16 37.0 12 17 33.0 12 18 35.0
12 19 32.0 12 20 30.0 12 21 27.0 12 22 27.0 12 23 19.0
12 24 21.0 12 25 32.0 12 26 30.0 12 27 27.0 12 28 27.0
12 29 28.0 12 30 20.0 13 2 38.0 13 3 26.0 13 4 24.0
13 5 28.0 13 6 28.0 13 7 27.0 13 8 29.0 13 9 27.0
13 10 33.0 13 11 36.0 13 12 27.0 13 13 24.0 13 14 27.0
13 15 33.0 13 16 40.0 13 17 41.0 13 18 36.0 13 19 24.0
13 20 25.0 13 21 24.0 13 22 28.0 13 23 26.0 13 24 25.0
13 25 20.0 13 26 23.0 13 27 22.0 13 28 32.0 13 29 29.0
13 30 19.0 14 2 54.0 14 3 42.0 14 4 41.0 14 5 37.0
14 6 35.0 14 7 33.0 14 8 39.0 14 9 53.0 14 10 42.0
14 11 28.0 14 12 27.0 14 13 26.0 14 14 26.0 14 15 42.0
14 16 38.0 14 17 36.0 14 18 31.0 14 20 20.0 14 21 26.0
14 22 26.0 14 23 23.0 14 24 28.0 14 25 20.0 14 26 19.0
14 27 24.0 14 28 34.0 14 29 29.0 14 30 18.0 15 2 41.0
15 3 30.0 15 4 30.0 15 5 35.0 15 6 33.0 15 7 26.0
15 8 27.0 15 9 41.0 15 10 33.0 15 11 36.0 15 12 27.0
15 13 28.0 15 14 32.0 15 15 39.0 15 16 39.0 15 17 39.0
15 18 27.0 15 20 20.0 15 21 26.0 15 22 28.0 15 23 23.0
15 24 27.0 15 25 24.0 15 26 32.0 15 27 32.0 15 28 44.0
15 29 28.0 15 30 18.0 16 3 39.0 16 4 38.0 16 5 32.0
16 6 30.0 16 7 28.0 16 8 28.0 16 9 35.0 16 10 28.0
16 11 24.0 16 12 29.0 16 13 26.0 16 14 31.0 16 15 31.0
16 16 36.0 16 17 34.0 16 18 31.0 16 20 24.0 16 21 25.0
16 22 31.0 16 23 26.0 16 24 25.0 16 25 35.0 16 26 31.0
16 27 28.0 16 28 25.0 16 29 24.0 16 30 19.0 17 3 38.0
17 4 41.0 17 5 30.0 17 6 28.0 17 7 39.0 17 8 33.0
17 9 29.0 17 10 25.0 17 11 38.0 17 12 23.0 17 13 26.0
17 14 28.0 17 15 29.0 17 16 38.0 17 17 38.0 17 18 28.0
17 20 24.0 17 21 25.0 17 22 28.0 17 23 24.0 17 24 29.0
17 25 19.0 17 26 22.0 17 27 29.0 17 28 39.0 17 29 24.0
18 3 39.0 18 4 38.0 18 5 36.0 18 6 33.0 18 7 28.0
18 8 27.0 18 9 26.0 18 10 28.0 18 11 31.0 18 12 29.0
18 13 24.0 18 14 29.0 18 15 30.0 18 16 35.0 18 18 38.0
18 20 29.0 18 21 30.0 18 22 23.0 18 23 23.0 18 24 29.0
18 25 29.0 18 26 23.0 18 27 20.0 18 28 38.0 18 29 36.0 :
" Analyse on the log scale because of skewness of distribution"
CALCULATE LogK = LOG10(K)
FVARIOGRAM [PRINT=*; Y=North; X=East; STEP=1; XMAX=5;\
DIRECTIONS=!(0); SEGMENTS=!(180)]\
LogK; VARIOGRAM=LogKvar; COUNTS=Kcounts; DISTANCES=Midpoints;\
LAG=lag
DHSCATTERGRAM LogK; LAG=lag
DHSCATTERGRAM [LAGCLASS=2] LogK; LAG=lag