Plots an h-scattergram (D.A. Murray).
Options
LAGCLASS = scalar or variate |
The lag classes to be displayed in the plots; default all lag classes |
---|---|
ARRANGEMENT = text |
Specifies whether to display the plots individually or with multiple plots on the same page (single , multiple ); default mult |
Parameters
DATA = variates |
Observations as a variate |
---|---|
LAGPOINTS = pointers |
Lag classes, indexes to observations and directions for plotting |
Description
DHSCATTERGRAM
plots an h-scattergram of all values of z(x) against z(x+h) within a lag class. H-scattergrams are useful for identifying outliers that can skew the average semivariance variance within a lag class. The plot displays a 1 to 1 reference line and the closer the points lie to this line the stronger the correlation and the smaller the semivariance.
The observations should be supplied using the DATA
parameter within a variate. The data for the lag classes can be taken directly from the FVARIOGRAM
directive. The parameter LAGPOINTS
corresponds to the parameter with the same name in FVARIOGRAM
. The elements of LAGPOINTS
contain:
1. variate of lag classes
2. variate of indices for z(x)
3. variate of indices for z(x+h)
4. factor of directions
By default an h-scattergram is produced for every lag class. However, you can select a subset of these by supplying the lag numbers in either a scalar or variate using the LAGCLASS
option. The ARRANGEMENT
option controls whether the plots are each drawn on separate pages or as a multiple plot in a 4 by 4 or 9 by 9 arrangement.
Options: LAGCLASS
, ARRANGEMENT
.
Parameters: DATA
, LAGPOINTS
.
Action with RESTRICT
If the data variates are restricted, only the units not excluded by the restriction will be used.
Reference
Webster, R. & Oliver, M.A. (2007). Geostatistics for Environmental Scientists, 2nd edition. Wiley, Chichester.
See also
Directives: FVARIOGRAM
, KRIGE
.
Commands for: Spatial statistics, Graphics.
Example
CAPTION 'DHSCATTERGRAM example',!t(\ 'Variogram of potassium levels at Brooms Barn',\ 'Experimental Station (see Webster & Oliver 2007',\ 'Geostatistics for Environmental Scientists, Wiley).');\ STYLE=meta,plain READ East,North,K 1 24 26.0 1 25 22.0 1 26 18.0 1 27 19.0 1 28 26.0 1 29 23.0 1 30 32.0 1 31 28.0 2 19 55.0 2 23 19.0 2 24 18.0 2 25 17.0 2 26 15.0 2 27 16.0 2 28 19.0 2 29 15.0 2 30 24.0 2 31 14.0 3 1 28.0 3 2 26.0 3 3 23.0 3 4 21.0 3 5 22.0 3 6 22.0 3 7 24.0 3 8 41.0 3 9 30.0 3 10 20.0 3 11 22.0 3 18 22.0 3 19 26.0 3 23 16.0 3 24 18.0 3 25 15.0 3 26 16.0 3 27 15.0 3 28 16.0 3 29 14.0 3 30 20.0 3 31 15.0 3 12 70.0 3 13 20.0 3 14 22.0 4 2 24.0 4 3 23.0 4 4 20.0 4 5 24.0 4 6 20.0 4 7 20.0 4 8 34.0 4 10 18.0 4 11 18.0 4 12 21.0 4 13 18.0 4 14 22.0 4 15 28.0 4 16 25.0 4 17 28.0 4 18 24.0 4 19 23.0 4 23 16.0 4 24 18.0 4 25 17.0 4 26 16.0 4 27 19.0 4 28 21.0 4 29 13.0 4 30 15.0 4 31 15.0 5 4 24.0 5 5 23.0 5 6 22.0 5 7 25.0 5 9 19.0 5 10 20.0 5 11 19.0 5 12 20.0 5 13 16.0 5 14 16.0 5 15 20.0 5 16 28.0 5 17 21.0 5 18 28.0 5 19 24.0 5 23 18.0 5 24 15.0 5 25 14.0 5 26 15.0 5 27 19.0 5 28 20.0 5 29 15.0 5 30 14.0 5 31 16.0 6 5 28.0 6 6 22.0 6 7 26.0 6 8 27.0 6 9 19.0 6 10 19.0 6 11 15.0 6 12 19.0 6 13 18.0 6 14 20.0 6 15 19.0 6 16 27.0 6 17 29.0 6 18 35.0 6 19 25.0 6 23 16.0 6 24 14.0 6 25 15.0 6 26 16.0 6 27 16.0 6 28 16.0 6 29 16.0 6 30 15.0 7 7 24.0 7 8 24.0 7 9 24.0 7 10 23.0 7 11 22.0 7 12 16.0 7 13 19.0 7 14 16.0 7 15 20.0 7 16 18.0 7 17 27.0 7 18 58.0 7 19 24.0 7 23 18.0 7 24 14.0 7 25 17.0 7 26 17.0 7 27 14.0 7 28 18.0 7 29 15.0 7 30 28.0 8 7 24.0 8 8 23.0 8 9 24.0 8 10 21.0 8 11 16.0 8 12 23.0 8 13 20.0 8 14 26.0 8 15 18.0 8 16 25.0 8 17 20.0 8 18 44.0 8 19 24.0 8 23 53.0 8 24 12.0 8 25 12.0 8 26 15.0 8 27 15.0 8 28 16.0 8 29 18.0 8 30 21.0 9 4 24.0 9 5 20.0 9 6 20.0 9 7 18.0 9 8 20.0 9 9 24.0 9 10 18.0 9 11 23.0 9 12 32.0 9 13 33.0 9 14 27.0 9 15 32.0 9 16 27.0 9 17 26.0 9 18 54.0 9 19 38.0 9 21 * 9 20 58.0 9 22 96.0 9 23 23.0 9 24 17.0 9 25 18.0 9 26 20.0 9 27 18.0 9 28 17.0 9 29 21.0 9 30 23.0 10 2 33.0 10 3 24.0 10 4 20.0 10 5 18.0 10 6 19.0 10 7 21.0 10 8 20.0 10 9 21.0 10 10 20.0 10 11 23.0 10 12 31.0 10 13 27.0 10 14 29.0 10 15 30.0 10 16 21.0 10 17 24.0 10 18 60.0 10 19 20.0 10 20 24.0 10 21 30.0 10 22 32.0 10 23 29.0 10 24 25.0 10 25 21.0 10 26 28.0 10 27 35.0 10 28 20.0 10 29 21.0 10 30 24.0 11 2 36.0 11 3 29.0 11 4 24.0 11 5 26.0 11 6 22.0 11 7 20.0 11 8 20.0 11 9 23.0 11 10 24.0 11 11 26.0 11 12 30.0 11 13 42.0 11 14 38.0 11 15 42.0 11 16 38.0 11 17 40.0 11 18 38.0 11 19 25.0 11 20 24.0 11 21 34.0 11 22 25.0 11 23 20.0 11 24 21.0 11 25 22.0 11 26 25.0 11 27 20.0 11 28 27.0 11 29 27.0 11 30 19.0 12 2 32.0 12 3 27.0 12 4 28.0 12 5 23.0 12 6 22.0 12 7 20.0 12 8 21.0 12 9 23.0 12 10 24.0 12 11 20.0 12 12 29.0 12 13 42.0 12 14 36.0 12 15 42.0 12 16 37.0 12 17 33.0 12 18 35.0 12 19 32.0 12 20 30.0 12 21 27.0 12 22 27.0 12 23 19.0 12 24 21.0 12 25 32.0 12 26 30.0 12 27 27.0 12 28 27.0 12 29 28.0 12 30 20.0 13 2 38.0 13 3 26.0 13 4 24.0 13 5 28.0 13 6 28.0 13 7 27.0 13 8 29.0 13 9 27.0 13 10 33.0 13 11 36.0 13 12 27.0 13 13 24.0 13 14 27.0 13 15 33.0 13 16 40.0 13 17 41.0 13 18 36.0 13 19 24.0 13 20 25.0 13 21 24.0 13 22 28.0 13 23 26.0 13 24 25.0 13 25 20.0 13 26 23.0 13 27 22.0 13 28 32.0 13 29 29.0 13 30 19.0 14 2 54.0 14 3 42.0 14 4 41.0 14 5 37.0 14 6 35.0 14 7 33.0 14 8 39.0 14 9 53.0 14 10 42.0 14 11 28.0 14 12 27.0 14 13 26.0 14 14 26.0 14 15 42.0 14 16 38.0 14 17 36.0 14 18 31.0 14 20 20.0 14 21 26.0 14 22 26.0 14 23 23.0 14 24 28.0 14 25 20.0 14 26 19.0 14 27 24.0 14 28 34.0 14 29 29.0 14 30 18.0 15 2 41.0 15 3 30.0 15 4 30.0 15 5 35.0 15 6 33.0 15 7 26.0 15 8 27.0 15 9 41.0 15 10 33.0 15 11 36.0 15 12 27.0 15 13 28.0 15 14 32.0 15 15 39.0 15 16 39.0 15 17 39.0 15 18 27.0 15 20 20.0 15 21 26.0 15 22 28.0 15 23 23.0 15 24 27.0 15 25 24.0 15 26 32.0 15 27 32.0 15 28 44.0 15 29 28.0 15 30 18.0 16 3 39.0 16 4 38.0 16 5 32.0 16 6 30.0 16 7 28.0 16 8 28.0 16 9 35.0 16 10 28.0 16 11 24.0 16 12 29.0 16 13 26.0 16 14 31.0 16 15 31.0 16 16 36.0 16 17 34.0 16 18 31.0 16 20 24.0 16 21 25.0 16 22 31.0 16 23 26.0 16 24 25.0 16 25 35.0 16 26 31.0 16 27 28.0 16 28 25.0 16 29 24.0 16 30 19.0 17 3 38.0 17 4 41.0 17 5 30.0 17 6 28.0 17 7 39.0 17 8 33.0 17 9 29.0 17 10 25.0 17 11 38.0 17 12 23.0 17 13 26.0 17 14 28.0 17 15 29.0 17 16 38.0 17 17 38.0 17 18 28.0 17 20 24.0 17 21 25.0 17 22 28.0 17 23 24.0 17 24 29.0 17 25 19.0 17 26 22.0 17 27 29.0 17 28 39.0 17 29 24.0 18 3 39.0 18 4 38.0 18 5 36.0 18 6 33.0 18 7 28.0 18 8 27.0 18 9 26.0 18 10 28.0 18 11 31.0 18 12 29.0 18 13 24.0 18 14 29.0 18 15 30.0 18 16 35.0 18 18 38.0 18 20 29.0 18 21 30.0 18 22 23.0 18 23 23.0 18 24 29.0 18 25 29.0 18 26 23.0 18 27 20.0 18 28 38.0 18 29 36.0 : " Analyse on the log scale because of skewness of distribution" CALCULATE LogK = LOG10(K) FVARIOGRAM [PRINT=*; Y=North; X=East; STEP=1; XMAX=5;\ DIRECTIONS=!(0); SEGMENTS=!(180)]\ LogK; VARIOGRAM=LogKvar; COUNTS=Kcounts; DISTANCES=Midpoints;\ LAG=lag DHSCATTERGRAM LogK; LAG=lag DHSCATTERGRAM [LAGCLASS=2] LogK; LAG=lag