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Introduction 

Surveys are widely used in many areas of modern life. Political opinion polls and 

the myriad of phone and postal surveys aimed at the general public spring instantly 

to mind. There are also vast numbers of more specialized surveys aimed at 

producing key facts for business, government, medical researchers and others. In 

addition, many scientific studies involve random sampling and may require the use 

of survey analysis methods. 

The analysis of surveys is, in many cases, a fairly simple exercise compared to 

many other statistical analyses. Unfortunately, that simplicity often tempts analysts 

to rely on unsuitable software, such as simple spreadsheet programs. Whilst these 

often give correct point estimates, they seldom produce valid standard errors and 

do not provide a means of identifying outlying or influential observations. The aim 

of this Guide is to show how the correct analysis can easily be achieved using 

Genstat’s facilities for survey analysis. 

Genstat can be used in two ways; the simplest, particularly for new users, is to 

use the menu system, and this Guide will show you how to perform all the 

analyses using menus. The second way is to use Genstat’s own programming 

language, and this can be an efficient approach for many surveys since it allows 

the automation of repetitive tasks. The use of programming is not described in the 

main text, but a separate chapter introduces the principles and some key 

commands, whilst an Appendix gives the commands to generate all the analyses 

described in the main text. Those keen to learn to program in Genstat may prefer 

to read the programming chapter first and then refer to the Appendix whilst 

working through the earlier chapters.  

The first stage in any survey is the design phase, but in this Guide we will 

concentrate on survey analysis, only briefly considering design issues. This should 

not be taken to imply that the design of a survey is not crucially important, but 

instead is a pragmatic decision based on the knowledge that many Genstat users 

will have to analyse surveys which they have not had the opportunity to design. 
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1 Basic principles 

In this chapter we introduce some of the basic principles behind the analysis of 

surveys in Genstat. These principles will be illustrated using the small Province 

dataset; more realistic examples will be examined in later chapters. Analysis will 

use the Single-stage Survey Analysis menu (SVSTRATIFIED procedure), but the same 

basic principles apply to the more complex analyses available from the General 

Survey Analysis menu (SVTABULATE procedure). 

 

In this chapter you will learn about 

• getting the data into Genstat 

• how the data should be 

organized prior to analysis  

• identifying unusual observations, 

some of which may result from 

errors in data processing  

• defining strata and supplying 

strata sizes 

 

 

1.1 Getting the data into 

Genstat 

For the first example we shall use the 

Province population, taking a simple 

random sample of eight municipalities 

as shown in the Excel spreadsheet in 

Figure 1.1. The variables 

%unemployment and unemployment 

are shown only for the sampled 

municipalities, with blanks for the 

unsampled ones. 

Excel is used for this dataset since it 

is one of the commonest formats used 

for small surveys, but Genstat can open 

files produced by a wide range of 

 

Figure 1.1 
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spreadsheet, database and statistical packages. More details can be found in the 

Getting Started Guide or by selecting Importing data from the on-line help. 

To open the file, click on the Excel Import Wizard icon on the Genstat toolbar (, 

or alternatively select Open from the File menu. The file is called Province.xls 

and can be found in the data subdirectory of the directory where Genstat is 

installed. (Alternatively, it can be found by selecting Open Examples Data Sets from 

the File menu, but this approach can, of course, be used only with the supplied 

example files). The data shown are in sheet simple RS full pop, and by 

selecting this sheet in the wizard’s dialogue box (left of Figure 1.2), then clicking 

on Finish then OK (right of Figure 1.2) to accept the default settings will 

successfully transfer the data into a Genstat spreadsheet window. 

In general, it is wise to start by calculating some simple descriptive statistics 

when investigating a new dataset. Looking at means, minima and maxima, and as 

well as graphical displays, such as scatter plots, can help identify the important 

features of the data. However, this example is so small that visual examination of 

the data is sufficient. From Figure 1.1 it is apparent that the first municipality has 

much higher numbers of unemployed people than the others, but that its 

unemployment rate is not particularly large; the number of unemployed stands out 

only because it has a much higher population than the other sampled regions. In 

terms of percentages, the distribution appears rather skewed, with the majority of 

municipalities having around 12% unemployment, but three of the eight having 

higher rates. 

  

Figure 1.2 
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To estimate the mean number unemployed per municipality and the total across 

all municipalities, we 

select Survey Analysis from 

the Stats menu, and then 

click on the Single-stage 

Survey Analysis sub-

option. The menu shown 

in Figure 1.3 will open. 

Place the cursor in the 

Data box and double click 

on the variable 

unemployment to 

transfer it to the box. 

Then place the cursor in 

the Labels box and double 

click on the variable 

municipality to 

transfer it to the box. 

Clicking on Run produces 

the output below. 

 

 

Survey analysis results 

======================= 

 

 

Data summary 

------------ 

 

Y-variate (response data):  unemployment 

Method:                     Design-based (expansion) 

Variance method:            Conventional (Taylor series) 

Deff:                       1.0000 

 

 

               Total no. obs.  Imputed    Sample  Excluded  Sampling fraction 

      Stratum 

     All data              32       24         8         0              0.250 

 

 

Estimated totals with 95% confidence limits 

------------------------------------------- 

 

                  Total      s.e.   %r.s.e.    Lower     Upper 

      Stratum 

     All data     26440     13282      50.2     -4968     57848 

 

 

 

Figure 1.3 
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Estimated means with 95% confidence limits 

------------------------------------------ 

 

                  Means      s.e.   %r.s.e.    Lower     Upper 

      Stratum 

     All data     826.2     415.1      50.2    -155.2      1808 

 

The default output shown above starts with a summary of the type of analysis 

and the data used. Deff refers to the design effect; i.e. the ratio of the variance 

under the design used to the variance under simple random sampling. Since this 

analysis uses simple random sampling, the design effect is exactly one. Following 

this there is a table of the data that have been used, with a row for each stratum if 

the design is stratified. It is worth checking this carefully to ensure the number of 

sampled observations is as expected. The column headed Imputed shows the 

number of rows for which there are no data collected for the variable analysed (i.e. 

rows that have a blank in column D of Figure 1.1).  

The following sections show the estimated means and totals. These are 

estimated using the usual methods for simple random sampling. The estimate of 

the mean is obtained by adding up the observed unemployment totals and dividing 

by the number of observations: 

= nyy
i
/  

The variance of the data is the sum of the squared differences between the 

observations and the mean. 

These equations are identical to the usual ones used in non-sampling situations, 

but the equation for the standard error of the mean is different, since it includes a 

term known as the finite population correction (fpc), which is equal to one minus 

the number of sampled observations (n) divided by the number of units in the full 

population (N): 

fpc  =  (1 – n / N).  

The fpc is required because we are making inferences about a population of 

known size, N, whereas in ordinary estimation we are interested in a hypothetical 

infinite population. Note that, if we sample all the units in the population (so that 

n=N), the fpc equals zero, and the standard error of the mean is also zero. This is 

because we then know the size of the mean exactly and there is no sampling error 

associated with its estimation. Conversely, if n is very small compared to N, the 

fpc becomes very close to 1, and the equation for the standard error of the mean 

becomes similar to the standard version. 

The figure labelled %r.s.e. is the relative standard error of the mean, and is 

simply the standard error of the mean (or any other statistic) expressed as a 
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percentage of its estimate (in this case 415.1 / 826.2 * 100 = 50.2%). The relative 

standard error is often referred to as the coefficient of variation (%cv), but the 

latter term can be ambiguous since it is also used to describe the standard deviation 

of observations expressed as a percentage of the mean. 

Finally, 95% confidence limits are shown for both the mean and the total. 

Limits calculated in this way can be expected to contain the true value 95% of the 

time. They are calculated using a t-statistic with 7 degrees of freedom, one less 

than the number of sampled units. If you wish to check the calculation, the 

appropriate value of the t-distribution can be found by selecting Probability 

Calculations from the Data menu. Notice that in this case, the lower limit is less than 

zero; simple random sampling with a sample size of eight is clearly not an 

effective sampling scheme for this dataset. 

1.2 Saving results 

In many cases the results in the 

output window will be sufficient, 

but often you will want to save the 

estimates in Genstat data 

structures. This might be to allow 

further analysis, or maybe to 

change the units in which they are 

measured. With large datasets 

containing many variables, you 

may want to save the estimates so 

that they can all be concisely 

displayed in the same spreadsheet. 

To save the estimates click on the 

Store button on the survey analysis 

menu (Figure 1.3). You will see 

the menu shown in Figure 1.4. In 

this case we are going to save the 

estimates of the totals and their 

standard errors. Click on the small 

boxes and the rectangles on the 

right become enabled, thus 

allowing us to type suitable names 

for saving them. These names can 

contain any of the 26 letters, plus 

 

Figure 1.4 
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% and _, and they are case sensitive. The numbers 0-9 can be used, but not at the 

start of the name. For more details see Section 1.4.3 of the Syntax and Data 

Management Guide, available from the help menu. In Figure 1.4 the Display in 

Spreadsheet box is also ticked; this is sensible when the results need to be saved, or 

cut and pasted to another package. 

1.3 Detecting outliers 

The design-based analyses described above make no assumptions about the 

distribution of the data, in contrast to many other statistical techniques which 

assume a particular underlying distribution, often a Normal distribution. However, 

this does not mean that the results are unaffected by the presence of small numbers 

of unusually large or small values, often known as outliers. When extreme outliers 

do occur, it is important to be aware of them, because they may indicate that the 

analysis cannot be relied upon. In addition, they sometimes arise because of errors 

in data recording or processing, and so it is good practice to investigate any 

particularly large outliers to ensure that they are not the result of mistakes. 

The methods provided for 

outlier detection can be seen in 

the Design based Survey Analysis 

Options menu (Figure 1.5), 

which can be opened by 

clicking on the Options button in 

Figure 1.3. If the Scatter plot box 

is ticked, a graphics window is 

produced containing a plot of 

the response variable against 

either the stratum number or, if 

the X parameter is set in order to 

carry out ratio analysis, a scatter 

plot of the response variable 

against X. These graphs are 

plotted on the log scale as 

survey data are frequently skew, 

which can make graphs on the 

natural scale uninformative. 

With the current dataset, the scatter plot is not particularly informative, since 

there are so few data points and only one stratum (Figure 1.6). Notice how by 

clicking on the data information tool (highlighted on the toolbar) and then 

 

Figure 1.5 
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positioning the mouse over a point, 

information about the point is 

displayed. With large datasets this 

can be handy when trying to locate 

an observation in the data 

spreadsheet. More usefully with 

small datasets, clicking on the 

Influence tick box (Figure 1.5) 

displays influence statistics. These 

are defined as the percentage 

change in the estimate of the grand 

total when the observation is 

replaced by a missing value (i.e. 

treated as if it was not sampled). 

By default the 10 highest 

observations are shown, but in this 

case only eight were sampled. For 

larger datasets this number can be 

increased using the options menu. 

 

 

 

 

10 points with highest influence 

-------------------------------- 

 

Unit          Stratum                Y           X  %influence 

Jyvaskyla      All data         4123.0           *       57.00 

Keuruu         All data          760.0           *        1.15 

Saarijarvi     All data          721.0           *        1.82 

Konginkangas   All data          142.0           *       11.83 

Kuhmoinen      All data          187.0           *       11.05 

Pihtipudas     All data          331.0           *        8.56 

Toivakka       All data          127.0           *       12.09 

Uurainen       All data          219.0           *       10.50 

 

Percentage influence is calculated as the percentage change 

in the grand total when each sampled observation is omitted. 

 

Notice that in this case, the figure from Jyvaskyla has an influence statistic 

of over 50%, confirming that these results should be treated with considerable 

caution. 

 
 

Figure 1.6 
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1.4 Practical 

This exercise involves verifying the influence statistic for Jyvaskyla by 

reanalysing the data without this observation. Start by saving the total for the full 

analysis as described above. Then go to the spreadsheet and form a copy of the 

unemployment column (select the Column option on the Spread menu, then click on 

Duplicate). Then delete the value in row one and repeat the analysis with this new 

variable. Finally calculate the influence using Calculate from the Data menu, as 

shown in Figure 1.7. 

 

1.5 Analysis with response data only 

The analyses described so far in this chapter have been based on a dataset with one 

row for each unit in the population (in this case each municipality in the province), 

even if they were not sampled, or did not respond. This way of presenting the data 

avoids the problems associated with specifying the design, and is a particular 

advantage, as we shall see in the next chapter, for estimating totals by ratio 

analysis. However, it is not always a sensible or practical approach, particularly for 

very large datasets. In this section we will consider the alternative layout, where 

there is a row in the dataset only for those units that provide data for the final 

analysis, which generally means those units that have been sampled and have co-

 
 

Figure 1.7 
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operated with the survey. Figure 1.8 shows the Province data in this layout. The 

Genstat spreadsheet shown was created by loading sheet simple RS sample of 

Province.xls using the Excel wizard (see Section 1.1). 

To analyse the data in this format, we once again select Survey Analysis from the 

Stats menu, and then click on the Single-stage Survey Analysis sub-option. However, 

this time we click on the button 

for Response data only under 

Data format (Figure 1.9). The 

population sizes box then 

becomes enabled, allowing us 

to enter the total number of 

units in the population (i.e. the 

total number of rows in the full 

dataset including unsampled 

municipalities, Figure 1.1). The 

analysis produced when the Run 

button is clicked is shown 

below; it is identical to the 

results obtained in Section 1.1 

above. 

 

 

 
 

Figure 1.9 

 

Figure 1.8 
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Survey analysis results 

======================= 

 

Data summary 

------------ 

 

Y-variate (response data):  unemployment 

Method:                     Design-based (expansion) 

Variance method:            Conventional (Taylor series) 

Deff:                       1.0000 

 

 

               Total no. obs.  Imputed    Sample  Excluded  Sampling fraction 

      Stratum 

     All data              32        24         8         0              0.250 

 

 

Estimated totals with 95% confidence limits 

------------------------------------------- 

 

                  Total      s.e.  %r.s.e.    Lower     Upper 

      Stratum 

     All data     26440     13282      50.2     -4968     57848 

 

 

Estimated means with 95% confidence limits 

------------------------------------------ 

 

                  Means      s.e.   %r.s.e.     Lower     Upper 

      Stratum 

     All data     826.2     415.1      50.2    -155.2      1808 

 

 

1.6 Stratified random samples – factors and tables 

So far, all the analyses have been based on simple random sampling, that is 

selecting units (in this case municipalities) at random with equal probability. In 

many cases this is not an efficient approach and so stratified random sampling is 

used, with different sampling probabilities in different groups (strata). To analyse 

stratified random sampling designs in Genstat, it is necessary to construct a factor 

to indicate which stratum each unit belongs to, and so we will commence by 

learning more about factors. 

For those familiar with the analysis of variance in Genstat, it is important to 

realize that the use of the word stratum is very different here. The strata in a 

survey are essentially similar to the blocks in a randomized block design; strata in 

a sample survey and blocks in a randomized block experiment are both generally 

selected to ensure that the units within a stratum or block are more homogeneous 
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than those in different ones. The strata in analysis of variance are more akin to the 

stages or levels in a multistage survey. 

Figure 1.10 shows the spreadsheet created by importing sheet stratified 

sample from Province.xls. Most of the columns are variates, that is numerical 

structures that can take any value, including negative values. Variates can be used 

in a wide variety of numerical calculations and statistical routines. The 

municipality column has a green ‘T’ in its title bar to indicate that it is a text. Texts 

can hold any textual strings, including numerical characters, and so cannot be used 

for standard numerical calculations. They are principally used for labelling 

observations, or recording comments. 

The stratum column has a red exclamation mark by its name and this 

indicates that it is a factor. Factors are numerical structures that can only take 

certain predefined values; for example, a factor for sex might take the values 

‘male’ or ‘female’. Factors are essentially numerical structures, but they may be 

assigned textual labels to aid interpretation of the output (see Section 2.2). In this 

case there are only two strata, and no textual labels have been defined, so only the 

values 1 and 2 (known as the levels of the factor) are allowed in the column. A 

factor can be created in a number of ways in the Genstat menu system. 

• When using the Excel wizard, the final menu box, Select Columns to Convert 

to Factors (right of Figure 1.2) suggests columns for conversion to factors. 

Highlighting the relevant column and clicking on the Factor button ensures 

that it becomes a factor. 

• In the spreadsheet window, right clicking on the column gives a list of 

options, one of which is Convert to Factor 

• From the Spread menu with the cursor in the column, select the Factor 

option and then Convert to 

 

Figure 1.10 
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Figure 1.11 shows how this 

data layout can be analysed by 

selecting Stratified random survey 

in the Design drop-down list 

box. Note how, with the cursor 

in the Stratification factor box, 

the Available Data box only lists 

stratum, since this is the only 

factor in the spreadsheet. Since 

the spreadsheet only contains 

response data, the population 

size of each stratum must be 

specified. When there is more 

than a single stratum, these 

must be specified in a Genstat 

structure and, to minimize the 

risk of associating numbers 

with the incorrect stratum, it is 

best to use a table. 

To create the table of population sizes, select the New option and Create sub-

option from the Spread menu. Then click on the Table item and tick the Create from 

Existing Factors box (left of Figure 1.12). At the next menu, click stratum across 

to the Selected Factors box (top right of Figure 1.12). In the Table name field you can 

type your own name for the table, say popsize, or leave the default name. Once the 

new table spreadsheet is created (bottom right), the total number of units in the 

population for each stratum can be entered. In the current example, the population 

comprises 32 municipalities of which 7 are in stratum 1 and 25 are in stratum 2. 

 

Figure 1.11 

 

 
 

 

Figure 1.12 
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The results are shown below. Note that the design effect (Deff) is substantially 

less than 1.0 indicating that the stratification has produced a substantial gain in 

precision, relative to a simple random sample of the same size. 

 

 

Survey analysis results 

======================= 

 

Data summary 

------------ 

 

Y-variate (response data):  unemployment 

Method:                     Design-based (expansion) 

Variance method:            Conventional (Taylor series) 

Deff:                       0.2065 

 

               Total no. obs.  Imputed    Sample  Excluded  Sampling fraction 

      stratum 

            1               7         3         4         0              0.571 

            2              25        21         4         0              0.160 

        Total              32        24         8         0              0.250 

 

 

Estimated totals with 95% confidence limits 

------------------------------------------- 

 

 

                  Total      s.e.  %r.s.e.    Lower     Upper 

      stratum 

            1     10510      4015      38.2     -2267     23288 

            2      4700      1481      31.5       -14      9414 

        Total     15210      4279      28.1      3081     27340 

 

 

Estimated means with 95% confidence limits 

------------------------------------------ 

 

                  Means      s.e.  %r.s.e.    Lower     Upper 

      stratum 

            1    1501.5     573.6      38.2    -323.8      3327 

            2     188.0      59.3      31.5      -0.6       377 

         Mean     475.3     133.7      28.1      96.3       854 

 

1.7 Practical 

Repeat the analysis above working from the full population dataset (sheet 

stratified full pop in Province.xls). The results should be identical, but 

are simpler to calculate because the population sizes for each stratum can be 

deduced by Genstat from the dataset, removing the need for the user to supply 

them in a separate data structure. 
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2 Estimating totals in stratified random surveys 

In this chapter we shall examine the estimation of population totals and means 

from single-stage surveys, including the use of ratio estimation. This type of 

analysis is common in business surveys that seek to estimate total production, and 

we will illustrate it using data from the June Agricultural Survey in England. In 

particular, you will learn about 

• ratio analysis 

• the different types of output that Genstat will produce 

• ways of handling outliers 

• how to program the analyses in Genstat’s programming language 

Whilst some of the material in this chapter is of general applicability, other 

sections are specific to the Single-stage Survey Analysis menu, which runs the 

SVSTRATIFIED command. Those readers working on more complex surveys, or 

those more interested in cross-tabulations of the data, may prefer to go straight to 

Chapter 3 where we will consider the more general facilities available from the 

SVTABULATE procedure via the General Survey Analysis menu. 

 

2.1 Design-based estimators 

The June Survey dataset is shown in Figure 2.1 below, and may be found in 

June.gsh. This is a relatively small subset of the full dataset, both in terms of 

units (nineteen thousand farms, compared to nearly two hundred thousand in the 

full survey population), and variables (eight, compared to around 150 in the full 

survey). It includes areas in hectares of various crops from the arable counties of 

the East of England, excluding very small holdings. Each row represents one 

agricultural holding (farm), and the spreadsheet contains all farms in the 

population, with missing values for those that were not sampled, or that did not 

respond.  
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The first column shows a unique number for each agricultural holding (note 

that these have been altered and randomized to preserve confidentiality). The 

second is a factor (note the red exclamation mark by its name) indicating the 

stratification used to sample holdings for inclusion in the survey. The strata are 

indicated by the numbers 2-5 representing different economic sizes of farms, 

whilst 99s indicate new holdings of unknown size. This type of numeric coding is 

frequently used for factors, but it is good practice to replace them by more 

meaningful textual labels, as this removes a potential source of confusion in 

interpreting statistical output. This is achieved by right mouse clicking on the 

strata column, selecting Column Attributes from the context menu, and then 

clicking Levels & Labels. The labels can then be entered into the Labels column, as 

shown in Figure 2.1. We will alter the labels in this way so that they read small, 

medium, large, very large for categories 2 to 5, and new for category 99. The 

categories can also be reordered by changing their numbers in the Ordinals column. 

In this case we will change the new category to have ordinal number 1, and 

renumber the others to become 2 to 5 (to match their levels), as this ensures they 

are in approximate order of contribution to the grand total. 

  

Figure 2.1 
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The holding and strata columns are shown in blue. This indicates that they 

have been frozen so that they always remain on the left of the window; this is done 

by selecting Sheet from the Spread menu with the cursor in the appropriate column, 

then Freeze Columns. The other change that will frequently be required when 

opening a spreadsheet for the first time is to set the numbers of decimal places 

shown. In particular, a field such as holding, containing long integer numbers 

will often appear in exponential format (e.g. 1.1001e+8). To set the number of 

decimal places, make a right mouse click with the cursor on the column, and then 

select Column Attributes before changing the Numeric format to Fixed. 

Let us start by performing the conventional design-based analysis (sometimes 

called expansion raising) on the area of wheat. This can be done in exactly the 

same way as the analysis of unemployment in Section 1.1; the menu settings are 

shown in Figure 2.2 and the resulting output is below. 

 

Survey analysis results 

======================= 

 

Data summary 

------------ 

 

Y-variate (response data):  A1_wheat 

Method:                     Design-based (expansion) 

Variance method:            Conventional (Taylor series) 

Deff:                       0.3453 

 

 

 

  

Figure 2.2 
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               Total no. obs.  Imputed    Sample  Excluded  Sampling fraction 

       strata 

          new            2613      1387      1226         0              0.469 

        small            5851      4859       992         0              0.170 

       medium            5479      4357      1122         0              0.205 

        large            3074      2128       946         0              0.308 

   very large            2139       917      1222         0              0.571 

        Total           19156     13648      5508         0              0.288 

 

 

Estimated totals with 95% confidence limits 

------------------------------------------- 

 

                  Total      s.e.  %r.s.e.    Lower     Upper 

       strata 

          new     10539      1493      14.2      7610     13469 

        small     28466      1874       6.6     24787     32144 

       medium    110304      4568       4.1    101341    119266 

        large    180870      5787       3.2    169514    192226 

   very large    329479      6183       1.9    317348    341610 

        Total    659658      9916       1.5    640216    679100 

 

 

Notice how, as would be expected from a sensible design, the sampling 

fraction is greater for the larger farms. It is also high for the new holdings stratum; 

since no background information is available for them, it is sensible to sample 

them intensively, in case they are large. In fact, the sampling probabilities shown 

are not, in this example, the ones originally planned, because they are in fact 

probabilities of being sampled and responding; holdings sampled but not 

responding are treated in the same way as those not sampled. This is common 

practice in many surveys, but it is appropriate only if the non-responders can be 

regarded as being missing at random; by contrast if, for example, farms with more 

wheat are less likely to respond, the resulting estimates will be biased. Alternatives 

are to make more complicated adjustments based on a model of non-response, or 

to use some form of imputation (see Chapter 4). 

The final estimate of approximately 660 thousand hectares has a relative 

standard error (coefficient of variation) of 1.5%; this is not bad, but, as we will see 

in the next section, it can be improved by use of ratio estimation. 
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2.2 Ratio estimation 

Whilst the exact amount of wheat grown by a farmer will vary somewhat from 

year to year, it tends not to change dramatically. There is thus a high correlation 

between the responses to this question in the current survey and the responses 

received the last time farmers were asked it. This correlation between the response 

variable (in this case the current wheat area) and the base data or auxiliary 

variable (the previous area) can be used to produce improved estimates of the 

population total using ratio estimation. For this to work, the base data must also be 

known for the holdings not sampled in the current year (if only response data are 

in the spreadsheet the method can also be applied when only the stratum totals of 

the previous estimates are known).  

Other situations where ratio estimation might help are as follows. 

• In the Province example, the population size of each municipality 

could be used to improve the precision of the unemployment 

estimate. 

• In a survey of car ownership in a particular area, the number of adults 

living in each household (perhaps taken from an electoral register) 

could be used as base data. 

• In a field survey designed to estimate the population of an 

endangered species by sampling 1km squares, the area of suitable 

habitat in each 1km square might be used as base data. 

To see why ratio estimation might improve precision, consider the graphs 

shown in Figure 2.3. The left hand graph illustrates the ordinary design-based 

estimates; the variability of the observed values about the mean is used to estimate 

the standard errors (i.e. the quantities indicated by the red vertical lines). With 

ratio estimation, the variability of interest is about a line described by: 

 Y = rX 

where r is the ratio calculated as  

xyr /= . 

The standard error is thus based on a variance calculated from the much 

smaller random errors shown on the right hand graph (again in red). 
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Before turning to the analysis, it is helpful to look back to Figure 2.1 to see the 

structure of the data. Looking down column xa1 (the previous data for wheat), it 

can be seen that all holdings contain a value, except for the new holdings in 

strata 99, which have not previously taken part in the survey. Genstat can 

analyse results like this provided the base data are either always present or always 

absent within a stratum. Ratio analysis is carried out using the usual Single-stage 

Survey Analysis menu, as is shown in Figure 2.4, and the output is shown below. 

 

 
 

Figure 2.3 

  
Figure 2.4 
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Survey analysis results 

======================= 

 

Data summary 

------------ 

 

Y-variate (response data):  A1_wheat 

X-variate (base data):      xa1 

Correlation:                0.935 

Ratio method:               separate 

Variance method:            Conventional (Taylor series) 

Deff:                       0.1159 (wrt design based srs) 

Deff ratio analysis:        (Not calculated due to missing X) 

 

               Total no. obs.  Imputed    Sample  Excluded  Sampling fraction 

       strata 

          new            2613      1387      1226         0              0.469 

        small            5851      4859       992         0              0.170 

       medium            5479      4357      1122         0              0.205 

        large            3074      2128       946         0              0.308 

   very large            2139       917      1222         0              0.571 

        Total           19156     13648      5508         0              0.288 

 

 

Estimated totals with 95% confidence limits 

------------------------------------------- 

 

                  Ratio     Total      s.e.  %r.s.e.    Lower     Upper 

       strata 

          new         *     10539      1493      14.2      7610     13469 

        small     0.821     55549      1596       2.9     52417     58682 

       medium     0.859    164976      2777       1.7    159527    170425 

        large     0.905    207290      3978       1.9    199483    215098 

   very large     0.912    317537      2200       0.7    313221    321854 

        Total     0.896    755892      5758       0.8    744602    767182 

 

Estimates in strata with ratio=* are based on simple raising 

The ratio shown in the total row is the combined ratio estimator 

 

* MESSAGE: Default seed for random number generator used with value 622571 

 

 

10 points with highest influence 

-------------------------------- 

 

Unit        Stratum                Y           X  %influence 

233540082    small              80.0       13.80      0.1048 

233860038    small              71.9        0.00      0.1096 

281070004    medium            195.2       48.80      0.1484 

343460118    large            1116.6      112.90      0.5008 

344230042    large               0.0      263.00      0.1178 

381130006    new               425.0           *      0.1189 

387050023    new               451.1           *      0.1262 

388090049    large             439.4       69.00      0.1860 

481490005    small              74.2        0.00      0.1131 

614160015    very large        722.0      224.00      0.1157 
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Percentage influence is calculated as the percentage change 

in the grand total when each sampled observation is omitted. 

 

 

A few extra items are now shown in the output. Firstly, the correlation between 

the response data and the base data is shown; this will give a good indication of 

whether the ratio analysis will be more effective than a design-based analysis. In 

this case the correlation is 0.935, suggesting that it should be highly effective. In 

the case of ratio analysis two design efficiency figures (deff) are usually quoted: 

one comparing the stratified sampling with a simple random sample of equivalent 

size, and one comparing the ratio analysis with a design-based one. In this example 

the latter cannot be calculated due to the missing base data in the new holdings 

stratum. 

In the table of total estimates, the ratio of response data to base data for the 

responding holdings is shown for each stratum. The estimated total is obtained by 

multiplying the sum of all base data in the stratum by the ratio. Since the base data 

are all missing from the new holdings stratum, no ratios can be calculated and the 

estimate of the total wheat area for the stratum is calculated using the design-based 

analysis (hence the estimate of 10539ha for new holdings, with s.e. of 1493ha is 

identical to that produced in Section 2.1). In all other strata, where estimates use 

ratio estimation, the standard errors are considerably lower than those of Section 

2.1. The result is that the standard error of the estimate of the total area of wheat in 

the region is now less than 6,000ha, compared to almost 10,000ha without the use 

of the base data. 

The SVSTRATIFIED command can produce a variety of different output, and 

to see exactly how the calculations are performed it is helpful to use a compact 

style of output by clicking the Compact output box on the Options menu. This is 

designed to produce a 

comprehensive summary of 

the analysis that can 

nevertheless fit onto a single 

sheet of paper, provided the 

number of strata is not too 

large. It can be used only 

with plain text output, which 

can be obtained by selecting 

Output on the View menu and 

then clicking on Plain Text 

(Figure 2.5). To get the full 

 
Figure 2.5 
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information shown below, the output width should be set to 110 characters or more 

by selecting Options from the Tools menu, and then altering the setting on the Text 

Editor tab (Figure 2.6).  

Figure 2.7 shows the output produced with this option set. The first difference 

in the compact output is that 

the table of observations now 

has two extra columns giving 

the number of observations 

greater than zero for the 

matched pairs of response (y) 

and base (x) data from those 

holdings responding to the 

survey (for example, looking 

at the spreadsheet in Figure 

2.1, rows 1 and 4 are 

excluded from these figures 

because they have missing 

values for a1_wheat). These 

numbers of non-zero 

observations are important in 

interpreting datasets, such as 

this one, where there are 

many zeros, as otherwise the 

sample size can give a 

misleading impression of the 

robustness of estimates. 

Totals for the responding 

units are shown in the table of 

estimated totals, again 

calculated using only the 

matched pairs of y and x 

figures in holdings where ratios are estimated. These are the figures used to 

calculate the ratio. For example, in stratum small the ratio is: 

r  =  Σyi / Σxi  =  4826 / 5879  =  0.8209 

 

 
Figure 2.6 
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The column to the right of the ratios shows the totals of the base (x) data for all 

units in the population. The estimates of the stratum totals (headed all) are 

obtained by multiplying these by the ratio. Again, using the small stratum as an 

example: 

Total = r Σxi = 0.8209*67667 = 55549  

(where summation is over the whole population). 

The imputed column contains the estimated total for the unsampled/non-

responding holdings. This is the difference between the total estimated wheat areas 

shown in column all and the total of the response data shown in the first numeric 

column. In the small stratum: 

Imputed total = 55549 – 4826 = 50723ha 

Comparison between the imputed and all columns thus provides an easy 

way of seeing how much of the estimated total in each stratum comes from real 

data, and how much is imputed from unsampled or non-responding holdings. 

Similarly looking up and down the imputed column shows where estimation is 

most critical. In this example, whilst the greatest estimated wheat area is in the 

very large stratum (318 thousand hectares), only 129 thousand hectares of this 

is imputed, compared to 188 thousand hectares obtained directly from farmers’ 

responses. The imputed totals are actually higher for the medium and small strata 

due to their lower sampling fractions, suggesting that these strata are key to the 

accuracy of the overall estimate for this variable. This is confirmed by the size of 

the standard errors for these strata. 

Raising factors are also shown in the table; these are more commonly known 

as survey or sampling weights. The design-based estimates shown in Section 2.1 

are obtained by multiplying the response totals (column sum y) by the expansion 

raising factor, whilst the ratio estimates shown in Figure 2.7 are obtained by 

multiplying the response totals by the ratio raising factor1. Thus, for the small 

stratum: 

Design-based estimate = 4826*5.898 = 28466ha 

Ratio estimate = 4826*11.510 = 55549ha 

Thus, these two columns are useful for highlighting strata where, as in this 

case, the estimates using the two methods differ substantially. 

 

 
1 In the terminology of Lehtonen & Pahkinen (1994, Practical methods for the design and analysis 

of complex surveys) the raising factor is the adjusted weight, formed by multiplying the sampling 

weight by the g-weight. 



2  Estimating totals in stratified random surveys 26 

2.3 Dealing with outliers 

If the Influence box is ticked, as in Figure 2.4, the following list of influence 

statistics is produced. 

 

 

10 points with highest influence 

-------------------------------- 

 

Unit        Stratum                Y           X  %influence 

233540082    small              80.0       13.80      0.1048 

233860038    small              71.9        0.00      0.1096 

281070004    medium            195.2       48.80      0.1484 

343460118    large            1116.6      112.90      0.5008 

344230042    large               0.0      263.00      0.1178 

381130006    new               425.0           *      0.1189 

387050023    new               451.1           *      0.1262 

388090049    large             439.4       69.00      0.1860 

481490005    small              74.2        0.00      0.1131 

614160015    very large        722.0      224.00      0.1157 

 

Percentage influence is calculated as the percentage change 

in the grand total when each sampled observation is omitted. 

 

 

Note that the number of influential points shown can be increased if needed by 

using the Options menu (Figure 2.4), and that the variable listed in the Labels box 

(in this case holding number) is used to label the units; by default the row number 

is displayed. 

Just because an observation is influential, it does not follow that it is incorrect, 

or that any adjustment is necessary. However, if resources are available to carry 

out checks on some of the data points, it is sensible to concentrate on these 

observations in order to maximize the reliability of the final estimate. The 

magnitude of the influence statistics is one guide to the effort which it is sensible 

to expend. In the example shown, most of the units have values of just over 0.1%; 

since the total estimate of the wheat area is 750 thousand hectares, this implies that 

they change the estimate by around 750ha, which is small compared to the 

standard error of nearly 6,000ha (this comparison can also be made by comparing 

the influence statistics with the relative standard error). Hence, investigating these 

influential points will not have much impact on the overall estimate, unless there is 

some systematic error causing a large number of units to all influence the total in 

the same direction; this might happen, for example, if a number of holdings had 

recorded their wheat areas in acres not hectares.  
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There is, however, one influence value that is much larger than the rest; the 

holding in unit 343460118 changes the overall estimate by around 0.5%. What is 

more, the information shown in the table is suggestive of a typing error. The 

recorded wheat area is 1116.6ha compared to 113ha the previous year; such a large 

increase would be highly unusual, whereas a change from 113ha to 116.6ha would 

be much more plausible. Checking the original survey form did indeed reveal that 

the farmer had written 116.6ha but that this had been miss-keyed as 1116.6ha. 

Once an outlier has been identified, it is necessary to decide what to do with it. 

In the case above this is straightforward; the miss-key should be corrected in the 

Genstat spreadsheet (and in the database from which it was formed, if appropriate) 

and the analysis repeated. The appropriate row in the spreadsheet can easily be 

found by clicking on the binoculars icon on the toolbar and searching for the 

holding number. In other cases, one of the following actions might be needed. 

• The observation can be replaced by a missing value. This is the 

correct course of action if it is clear that the data are unreliable, but 

the correct value cannot be found, possibly because the farmer could 

not be contacted. This is perhaps more likely to occur in an 

anonymous survey, when it is impossible to re-contact the respondent 

to find the correct values. To insert the missing value, simply find the 

appropriate row in the spreadsheet, highlight the value and press the 

Delete key. 

• The unit can be removed from the population. This is quite unusual 

but may be necessary if, for example, investigation shows that the 

farm was actually outside the geographic area covered by the survey. 

This can be achieved by restricting the unit out of the data, as 

described in the next section. 

• The unit can be given a weight of exactly 1.0 in the analysis (added 

back). This means that it contributes to the total estimate, but is 

ignored for the purposes of extrapolating the results to the unsampled 

units. This is done when the unit is not representative of the survey 

population as a whole. It can also be achieved using a restriction, but 

it is important to understand the reasons for this approach and so it 

will be considered in more detail in the next section. 

It is also important to stress that none of these actions are appropriate when the 

outliers are not due to any errors and when the units are genuinely representative 

of the survey population. In this case the original analysis must stand, although, 

when one or more units strongly influence the results, it may be appropriate to 
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publish the estimates with a warning that this is the case, or to publish results with 

and without the outlier(s). 

 

2.4 Using restrictions 

In this section we will look at how restrictions can be used to exclude an 

observation from the population, or to deal with an outlier that needs to be given a 

weight of 1.0 because it is not representative of the wider survey population. 

A restriction is generally used in Genstat to confine an analysis to a specified 

subset of the data, but on a temporary basis, so that the full dataset is still stored 

within Genstat, thus 

allowing rapid removal of 

the restriction. When 

analysing single-stage 

surveys with 

SVSTRATIFIED, 

restrictions may be used 

to exclude a unit totally 

from the survey 

population.  

Restrictions can be 

created most easily by 

using the Spread menu. 

For example, let us 

suppose that 

investigations have 

shown that holding 

number 343460118, the 

outlier identified above, 

was actually not in the 

survey region at all, but 

was a farm in Scotland. It 

should therefore be 

completely removed from 

the dataset, and one 

option would be simply to 

delete this row. However, 

this can sometimes cause 

 
Figure 2.8 

 

 
Figure 2.9 
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problems, perhaps because we have other spreadsheets that would also require 

modification, so instead we will use a restriction to exclude it. First, we select By 

value on the Restrict/filter option on the Spread menu (Figure 2.8) and then enter the 

holding number (Figure 2.9). We want to exclude, not include this unit, so we 

click the appropriate radio button. Once we click either the Apply or OK button row 

8500 vanishes from the 

spreadsheet window, as 

shown in Figure 2.9. In 

some situations, it may be 

still useful to see the 

excluded data, and this 

may be achieved by 

clicking on the cross at the 

top of the scrollbar; the 

row excluded by the 

restriction then appears in 

red (Figure 2.10). 

Once the restriction has been applied, the analysis can be re-run to produce the 

output shown below. The excluded column now shows that one unit from the large 

stratum is excluded from the calculations. 

 

 

Survey analysis results 

======================= 

 

Data summary 

------------ 

 

Y-variate (response data):  A1_wheat 

X-variate (base data):      xa1 

Correlation:                0.944 

Ratio method:               separate 

Variance method:            Conventional (Taylor series) 

Deff:                       0.0924 (wrt design based srs) 

Deff ratio analysis:        (Not calculated due to missing X) 

 

 

               Total no. obs.  Imputed    Sample  Excluded  Sampling fraction 

       strata 

          new            2613      1387      1226         0              0.469 

        small            5851      4859       992         0              0.170 

       medium            5479      4357      1122         0              0.205 

        large            3074      2128       945         1              0.308 

   very large            2139       917      1222         0              0.571 

        Total           19156     13648      5507         1              0.287 

 

 

 
Figure 2.10 
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Estimated totals with 95% confidence limits 

------------------------------------------- 

 

 

                  Ratio     Total      s.e.  %r.s.e.    Lower     Upper 

       strata 

          new         *     10539      1493      14.2      7610     13469 

        small     0.821     55549      1596       2.9     52417     58682 

       medium     0.859    164976      2777       1.7    159527    170425 

        large     0.888    203405      2868       1.4    197777    209033 

   very large     0.912    317537      2200       0.7    313221    321854 

        Total     0.892    752007      5055       0.7    742096    761918 

 

 

Estimates in strata with ratio=* are based on simple raising 

The ratio shown in the total row is the combined ratio estimator 

Totals and means exclude restricted (excluded) data 

 

 

In the analysis of a 

single-stage survey 

using the 
SVSTRATIFIED 

command, restrictions 

can also be used when 

one or more units are 

not considered as 

representative of the 

wider population. They 

are then excluded from 

the main calculations 

but are ‘added back in’ 

to the final estimates. 

This is equivalent to 

giving them a weight of 

1.0 in the analysis. It is 

achieved by clicking on 

the add back to total 

estimate radio button 

on the options menu 

(Figure 2.11).  

Let us now suppose that the response from holding 343460118 was indeed 

correct, but that is not considered representative of the wider population. This 

might be because of some exceptional factor that did not apply to other holdings. 

 
Figure 2.11 
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When using a ratio analysis, it is also permissible to use this approach if the base 

data are thought to be incorrect. For example, suppose that investigations on 

holding 343460118 showed that the area of 1116ha was correct, but that the 

previous value of 113ha was incorrect and the true base value could not be 

ascertained. Thus, the apparent ten-fold increase in the wheat area is misleading 

and should not be extrapolated to other holdings. The modified estimates of the 

totals are then as shown below. 

 

 

Estimated totals with 95% confidence limits 

------------------------------------------- 

 

 

                  Ratio     Total      s.e.   %r.s.e.     Lower     Upper 

       strata 

          new         *     10539      1493      14.2      7610     13469 

        small     0.821     55549      1596       2.9     52417     58682 

       medium     0.859    164976      2777       1.7    159527    170425 

        large     0.888    204522      2868       1.4    198893    210150 

   very large     0.912    317537      2200       0.7    313221    321854 

        Total     0.892    753123      5055       0.7    743212    763035 

 

 

Estimates in strata with ratio=* are based on simple raising 

The ratio shown in the total row is the combined ratio estimator 

Totals and means include restricted (excluded) data 

 

 

Notice that the new total estimate is now equal to the previous total estimate 

when the holding was completely excluded, plus the observed value for the 

holding which has been ‘added back’ to the total: 

New estimate = 752007 + 1116 = 753123 

It is important not to over-use this approach. It can be tempting to assume that 

just because an observation is influential, it is atypical and should be added back to 

the total in the way described above. This is incorrect and can lead to an 

undesirable degree of subjectivity in results, with outliers being removed until an 

expected value is achieved. Instead the approach should be used only in 

exceptional circumstances, where the unit is clearly qualitatively different to the 

rest of the population, or where there is a problem with the base data. 

2.5 Practical 

The approach of adding an outlier back to the total is equivalent to putting the 

observation in its own stratum, which is therefore sampled at a rate of 100%. To 
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show that this is the case, duplicate the stratum factor and create an extra factor 

level. Remove all restrictions and edit the duplicated stratum factor to take this 

new value for holding 343460118 before running the analysis again. 

2.6 The combined ratio estimator 

As we have seen, the analysis of the wheat area produced robust results. There was 

a single large outlier, and the ratios look logical, with an increasing trend with 

increasing farm size. This is not always the case, particularly when numbers of 

sampled observations in each stratum are smaller and the distribution of the data is 

more skew. Consider the example of variable a11_earlies, which gives the area 

of early potatoes grown on each holding. 

 

 

Estimated totals with 95% confidence limits 

------------------------------------------- 

 

                  Ratio     Total      s.e.   %r.s.e.     Lower     Upper 

       strata 

          new         *       989     263.8      26.7       471      1506 

        small     1.293      2270     307.8      13.6      1666      2874 

       medium     0.763      5099     417.6       8.2      4279      5918 

        large     0.978      9131     507.8       5.6      8135     10128 

   very large     0.912     32980     954.1       2.9     31108     34852 

        Total     0.916     50469    1227.6       2.4     48062     52876 

 

 

 

 
Figure 2.12 



2  Estimating totals in stratified random surveys 33 

In this case, whilst the number of observations is the same as for the wheat 

example, there are far fewer non-zero values, resulting in larger relative standard 

errors. This can be seen in the plots in Figure 2.12, which have been produced 

using the Graph for each stratum button on the Options menu – notice the use of the 

data information tool (on toolbar, with arrow and question mark) to reveal details 

of a point on the graph. The ratios show a less logical trend, which could be simply 

a product of random variation; it is difficult to see why the ratio for medium sized 

farms should be much lower than that for either small or large ones. It may 

therefore be preferable to use a robust estimator of the ratio, pooling information 

from all strata. This can be achieved by clicking either Combined ratio or Classical 

combined ratio from the Options menu. An extract of the output is shown below in 

compact style. 

 

 

Estimated totals 

---------------- 

 

                 Matched sample          All data    Raising factor  Estimated totals 

                 sum y    sum x    ratio    sum x    ratio expans'n  imputed      all      

       strata 

          new      464        *        *        *    2.131    2.131      525      989     

        small      284      220   0.9161     1755    5.944    5.898     1406     1691     

       medium      816     1070   0.9161     6684    7.303    4.883     5144     5960     

        large     2509     2566   0.9161     9338    3.473    3.249     6204     8713     

   very large    23510    25790   0.9161    36179    1.405    1.750     9517    33027     

        Total    27584    29646   0.9161    53956    1.826    3.478    22795    50379    

 

 

The results shown are for the setting Combined ratio; the overall ratio is applied 

to the sum of the base (x) data for holdings not sampled, and then this is added to 

the observed response (y) data. For example, for the small farms stratum: 

 Estimate of total = (1755-220)*0.9161 + 284 = 1691ha 

The classical combined ratio is the form presented in most textbooks, in which 

the base data total is simply multiplied by the overall ratio: 

 Estimate of total = 1755*0.9161 = 1608ha 

In general, the two variants give similar results, but when sampling ratios are 

high the classical combined ratio can occasionally produce illogical estimates, 

where the total for the whole stratum is estimated to be less than that for the 

sampled units. 

 



2  Estimating totals in stratified random surveys 34 

2.7 Saving and exporting results 

Most of the results displayed in the output produced by the SVSTRATIFIED 

command can be saved using the Save menu (Section 1.2). Saving results can be 

useful for two reasons. Firstly, the saved structures can then be used within 

Genstat for further calculations or in the production of graphs. Secondly, it is often 

necessary to export the results to other packages (for example, Excel) for 

presentation or other purposes. 

Figure 2.13 shows 

the options set to save 

the fitted values, the 

influence statistics, 

the totals and the 

standard errors of the 

totals. The Display in 

Spreadsheet box is 

ticked and the 

resulting spreadsheets 

are shown below. 

Note that in this case 

the totals and their 

standard errors have 

been saved as table 

structures, which 

means they are 

labelled with the 

stratum names. 

Alternatively, if the 
Overall summaries 
button is selected, scalar quantities are created, saving just the overall total figures.  

The fitted values are often useful, for example in constructing estimates for 

sub-populations. When ratio analysis is used they are equal to the base value times 

the appropriate ratio, or when the design-based estimation is used (as in the new 

holdings stratum here), they are simply set to equal the mean. 

When tables of results are to be exported into other packages, there are four 

possible approaches. 

1. Cutting and pasting from the output window. Simply highlighting the 

output and selecting Copy from the Edit menu (or the Copy button or 

Ctrl-c) can be adequate, particularly if pasting into a word processing 

 
Figure 2.13 
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package from output in rich text format. If using plain text output, it 

will be necessary to use a font such as courier in the word processing 

package. 

2. Copy special. When copying from a plain text output window, 

pasting into a word processing package does not give a true table, 

and this can result in poor alignment of columns. Selecting Copy 

Special from the Edit menu gives a variety of options that allow results 

to be copied in a proper tabular form. 

Both of the above approaches will copy results only with the precision 

shown in the output window, and so they are not advisable when further 

numerical processing is intended. The following options avoid this problem. 

3. Copying from spreadsheets. The data to be exported are put in one or 

more spreadsheets by selecting New and then Data in Genstat from the 

Spread menu. The required cells are then highlighted and copied. This 

method results in the data being pasted with full precision, as long as 

the Paste with full precision box is ticked on the Sheets tab of 

Spreadsheet Options (which can be opened from the on the Tools menu 

on the menu bar). 

4. Saving from spreadsheets. Once the data have been put in a 

spreadsheet, Genstat allows them to be saved in a wide variety of 

formats for import into spreadsheets or other statistical packages. 

This is generally the best approach when large amounts of data are to 

be exported. 
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3 General survey analysis 

So far, all the analyses considered have used simple random sampling or stratified 

random sampling, and their aim has been to estimate a population mean or total. In 

this chapter we will learn how the General Survey Analysis menu and the 

SVTABULATE procedure can be used for the following more complex situations 

• designs with unequal sampling weights 

• cross-tabulations of means, totals and ratios 

• Wald tests of differences between means 

• means, totals and ratios for sub-populations 

• two stage samples 

The table below compares the features of SVTABULATE with the 

SVSTRATIFIED command used for the analyses in Chapters 1 and 2. 

 

 SVSTRATIFIED SVTABULATE 

Menu Single-stage Survey Analysis General Survey Analysis 

Main purpose Estimation of population 

means and totals 

Cross tabulations 

Stages One-stage only One- or two-stage 

Survey weights Calculated internally Usually supplied explicitly, but 

can be calculated 

Quantile 

estimation 

No Yes 

Ratio estimation Yes Yes, but cannot directly 

produce population totals 

Wald tests No Yes 

Restrictions Used to exclude unit from 

population, or add back in 

Define subpopulations 

 

In this chapter we will deal with datasets where the weights are supplied. 

Information on how survey weights are calculated and modified can be found in 

Chapter 4. 

All analyses described in this chapter are carried out using the menu system. If 

you are interested in using Genstat’s command language, you may find it helpful 

to read it in conjunction with Chapter 5 on programming and Appendix 1 which 

lists the commands to achieve the same analyses. 
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3.1 Farm Business Survey dataset – merging data 

We shall illustrate the next few sections with data from the Farm Business Survey 

in England. This is a single-stage stratified random sample, but the survey weights 

have been adjusted by calibration (Section 4.5) so that they are not equal within a 

stratum. For the purposes of this chapter, we will treat the calibration weights as if 

they were sampling weights; this is not strictly correct, but it is generally a 

conservative assumption (i.e. standard errors will be larger than the true values). In 

Section 4.5 we will show how the correct standard errors can be calculated. 

The data available here consist of the farm’s net margin, income from farming, 

income from other activities, and subsidy payments. There is also information on 

the farmer’s sex, age and level of education. This dataset is in the Excel file 

FBSdata.xls. A separate Genstat file, FBS_England.gsh, contains the 

information needed for analysis, namely the survey weights and strata, plus some 

other information on the farms. 

To merge these files for analysis, we first need to import the Excel file into 

Genstat using the Excel import wizard (the Excel icon on the second row of the 

toolbar), as described in Section 1.1. An additional complication is that the 

spreadsheet has an extra line of text in row 2, giving the variable names in the 

survey database (Figure 3.1). These can be read in as column descriptions by 

clicking the appropriate box at the Select Options for Importing Excel Data window 

which is displayed by the wizard (Figure 3.2). Column descriptions can be 

particularly useful to provide a fuller definition of each column when it is desired 

to keep the column names themselves brief. To allow sex and education to be 

used in cross-tabulation, they should be set to be factors, either in the wizard or by 

right mouse-clicking in the columns and selecting Convert to Factor from the context 

menu (see Section 1.6). 

  
Figure 3.1 

 

 
Figure 3.2 
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Next the file FBS_England.gsh needs to be opened in Genstat; then with it as 

the active window select Manipulate from Spread menu and then Merge from the sub-

options. The FBSdata.xls dataset has some extra farm businesses in it that are 

not required for the analyses here, so the Do not transfer these rows button should be 

clicked (Figure 3.3). The completed file should then be saved so that these 

operations do not need to be repeated. A version of the merged file is provided as 

FBS_England_Merged.gsh, if you do not wish to do this yourself. This version 

also has labels added to the education factor to aid its interpretation. The four 

columns on the left have been frozen (Freeze columns from Sheet on the Spread 

menu). 

  
Figure 3.3 
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3.2 Cross-tabulation 

To illustrate cross-tabulation we will produce a table of mean incomes by farmers’ 

sex using the General Survey Analysis menu with Stratified random survey selected in 

the Design box. Figure 3.4 shows the appropriate settings. Factor stratum has 

been clicked across into the Stratification factor box, and factor sex across into the 

Classification factor(s) box. More than one factor can be specified, if required; they 

should be separated with commas. The variate weights has been entered into the 

Weights box, and the variate farm into the Labels box. 

Note that, 

unlike with the 
SVSTRATIFIED 

command, it is not 

always necessary to 

supply the stratum 

population sizes. 

This is because 

SVTABULATE can 

deduce them from 

the sum of the 

weights in each 

stratum. However, 

if preferred, the 

weights can be left 

unset and 

population sizes 

supplied instead.  

In Figure 3.4, the labels have been set to the farm numbers; this makes the 

influence statistics easier to interpret than if they were labelled by the row 

numbers, which would be the case if this box is left blank. 

The output produced when the Run button is clicked is shown below2. At the 

top is a summary of the analysis. This includes information on the range of 

weights. More detail on the range of the weights and the response data, as well as 

the number of observations per stratum, can be obtained by ticking the Summary by 

 
2 The methodology used for calculating survey estimates in Genstat is similar to that used in the US 

Census Bureau’s Integrated Microcomputer Processing System (IMPS) - see 

https://www.census.gov/data/software/cspro/download/imps.html. 

 
Figure 3.4 

 

https://www.census.gov/data/software/cspro/download/imps.html
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stratum box on the Options menu. In this case it might be wise to investigate the 

large range in weights, since there is a more than one hundred-fold difference 

between the minimum and maximum weights. 

 

 

Survey analysis results 

======================= 

 

Summary of analysis 

------------------- 

 

Y-variate (response data):              farmincome 

Method:                                 Design-based (expansion) 

Stratification factor:                  stratum 

Number of strata:                       75 

Components for variance calculation:    Between sampling units 

Confidence interval method:             tdistribution (95% limits) 

Total number of responses:              1776 

Survey weights:                         weight 

Weights range:                          Min = 1.483  Mean = 34.71  Max = 185.8 

Sum of weights:                         61653 

 

 

Means with 95% confidence limits 

-------------------------------- 

 

                      n   Sum wts      Mean     s.e.   %RSE/CV     Lower    Upper 

 05farmer.gender 

         male      1723     59740     21403     1884      8.80     17708    25098 

       female        53      1913     12823     5757     44.89      1532    24114 

         Mean      1776     61653     21137     1830      8.66     17547    24726 

 

Standard errors based on Taylor series approximations. Confidence limits use t-

distribution with 1701 d.f. 

 

 

Looking at the results themselves, the mean income for female farmers is much 

smaller than that for males, but the sample size is small for the latter, with a 

relative standard error approaching 50% of the mean. The sum of the weights for 

each category is also shown, and this shows that the low sample size for women 

farmers reflects the low estimated number in the population, rather than being due 

to a particularly low sampling level. Given the large standard errors, it is difficult 

to tell if this represents a real difference between the mean farming incomes of 

men and women in the population. Ticking the Wald Tests box on the Options menu 

(Figure 3.4) produces the following output. 
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Adjusted Wald test 

------------------ 

 

 

                    Means 

 05farmer.gender 

         male       21403 

       female       12823 

 

 

Test of null hypothesis that the means above are equal 

Test statistic F = 1.98 with 1 and 1701 d.f. 

Probability = 0.160 

 

The Wald test indicates that there is a probability of 0.160 (i.e. 16%) of 

observing an F-statistic at least as large as this, even if there is no real difference 

between the means. Hence, we cannot reject the null hypothesis that the means are 

different. 

One point to note is that the calculation of Wald tests requires knowledge of 

the covariances between the dummy variables representing the different cells in 

the table. This involves the use of a different algorithm that is much slower with 

large datasets. Hence, except for small datasets, it is best not to calculate Wald 

statistics (or to save variance-covariance matrices of estimates) unless they are 

genuinely needed. 

Further information on the reliability of these means can be obtained by 

displaying the influence statistics. These are defined in a similar way to those 

produced by the SVSTRATIFIED command; they indicate the percentage change in 

the estimate of the grand total (or equivalently, the mean) when the observation is 

replaced by a missing value and its weight is redistributed across the other 

observations in each stratum. Farm 14501 has by far the biggest influence statistic 

with respect to the grand total, with an income of over £3 million. This is 

surprisingly large for a farm in a stratum classified as small, and it should 

therefore be checked. Influence statistics are also shown for the individual cells in 

the table (i.e. for the male and female cells, as opposed to the grand total). Farm 

14501 is again large, but there are some even larger statistics for those with female 

farmers; not surprisingly, given the small sample size. 
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10 points with highest percentage influence on grand total 

---------------------------------------------------------- 

 

farm         stratum                                  Weight  farmincome  %influence 

10891        Dairy (Lowland) Medium                    47.75      283184       0.957 

12452        Specialist Poultry Small                  54.12       24971       0.900 

12506        Specialist Poultry Small                  42.96       23521       0.703 

12518        Specialist HNS Very large                 35.63      323580       0.690 

14501        Specialist Poultry Small                  30.58     3273062       7.612 

14583        Cereals Very large                        24.58      583178       1.021 

14595        General Cropping Very large               23.96     -448626       0.999 

14601        General Cropping Very large               14.75      678310       0.688 

14848        Mixed Very large                          49.57      250916       0.786 

43140        Other Horticulture Very large             27.24      625315       1.143 

 

* Note: The influence value is the percent change in the estimate when the observation is 

omitted 

 

10 points with highest percentage influence on individual cells 

--------------------------------------------------------------- 

 

farm          05farmer.gender      Weight  farmincome  %influence 

10477        female                 16.20       81457        5.38 

14459        female                 28.74      -91126       10.54 

14501        male                   30.58     3273062        7.76 

14598        female                 20.55      408924       34.18 

15856        female                 45.35       29849        5.44 

16005        female                 74.26      -17954        5.44 

43214        female                 28.10      151862       16.87 

43295        female                  4.88      443265        8.82 

43471        female                 30.16      117888       13.81 

48360        female                 40.19      -29156        4.78 

 

* Note: The influence value is the percent change in the estimate when the observation is 

omitted 

 

3.3 Sub-populations 

Tables of means or totals can be classified by two or more factors, but in practice 

this can make the output more difficult to interpret, particularly if the factors have 

many levels. If only some of the factor levels are of interest, more concise tables 

may be produced by confining the analysis to this subpopulation. For example, 

suppose we were interested in the effect of educational qualifications on the 

farming income of male farmers. Rather than having to interpret two-way tables 

classified by sex and education, we can restrict the analysis to male farmers only, 

so that only the cells of interest are shown. 
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The first stage in this analysis is to apply the restriction by selecting To Groups 

(factor levels) from the Restrict/Filter submenu of the Spread menu (Figure 3.5) with 

the spreadsheet window active. sex can then be selected from the drop down list 

of factors and male highlighted as shown in Figure 3.6, and when the Apply button 

is clicked, row 6 relating to a female farmer disappears from view. To check that 

the restriction is operating 

as intended, particularly 

with complex restrictions, 

it may be helpful to click 

on the black cross in the 

top right hand corner of 

the spreadsheet window, 

level with the variable 

names; rows excluded 

from the dataset by the 

restriction are then shown 

in red (Figure 3.7). 

Once the restriction has been used to define the sub-population of interest, the 

analysis can be specified, as in Figure 3.4 but with education as the 

classification factor. The output is shown below. 

 

 

Survey analysis results 

======================= 

 

Summary of analysis 

------------------- 

 

Y-variate (response data):              farmincome 

Method:                                 Design-based (expansion) 

 
Figure 3.7 

 
Figure 3.5 

 

 
Figure 3.6 
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Stratification factor:                  stratum 

Number of strata:                       75 

Components for variance calculation:    Between sampling units 

Confidence interval method:             tdistribution (95% limits) 

Total number of responses:              1776 

Survey weights:                         weight 

Weights range:                          Min = 1.483  Mean = 34.71  Max = 185.8 

Sum of weights:                         61653 

Note: statistics above relate to the whole sample, not just the subset defined by the 

restriction 

 

 

Means for subpopulation defined by restriction in farmincome with 95% confidence limits 

--------------------------------------------------------------------------------------- 

 

                      n   Sum wts      Mean     s.e.   %RSE/CV     Lower    Upper 

    education 

  school only       526     19874     13807     1510     10.93     10846    16768 

         GCSE       230      8536     30082    11729     38.99      7078    53087 

     A levels       121      4123     20041     3081     15.37     13997    26084 

      college       511     16356     20886     1680      8.04     17590    24181 

       degree       222      6789     38041     5063     13.31     28110    47972 

     postgrad        41      1645      9757     4682     47.98       574    18940 

   apprentice        36      1323     15941     3389     21.26      9294    22587 

        other        36      1094     25402     8467     33.33      8796    42008 

         Mean      1723     59740     21403     1884      8.80     17708    25098 

 

 

The summary of analysis section is identical to that in the previous section, 

since this relates to the population as a whole. However, in the section headed 

‘means for subpopulation...’ the sample size (n) and sum of weights for 

the overall mean are less than those in the full population; reference to the 

previous section will show that this row is identical to that for male farmers, 

confirming that the analysis is now confined to male farmers only. 

 

3.4 Practical 

Construct tables of farmincome tabulated by sex for farmers in the education 

category school only and, separately, for those with college education. Save the 

means and their standard errors in suitably named tables by clicking on the Store 

button and display them in spreadsheets next to each other in order to make it easy 

to make comparisons. 
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3.5 Counts and proportions 

So far, all the analyses in this 

section have aimed to 

estimate means or totals, but 

sometimes we may instead 

want to estimate the 

proportion of the population 

that has a particular 

characteristic. For example, 

as a result of the analysis of 

farm income by sex in 

Section 3.2, we might be 

interested in the proportion of 

farmers who are women. To 

answer this question we rerun 

the analysis, but with the Data 

box left blank (Figure 3.8). 

Genstat then produces the 

following results. 

 

 

Survey analysis results 

======================= 

 

Summary of analysis 

------------------- 

 

Y-variate (response data):              Count 

Method:                                 Design-based (expansion) 

Stratification factor:                  stratum 

Number of strata:                       75 

Components for variance calculation:    Between sampling units 

Confidence interval method:             tdistribution (95% limits) 

Total number of responses:              1776 

Survey weights:                         weight 

Weights range:                          Min = 1.483  Mean = 34.71  Max = 185.8 

Sum of weights:                         61653 

 

 

Counts with 95% confidence limits 

--------------------------------- 

 

                      n   Sum wts     Total      s.e.   %RSE/CV     Lower    Upper 

 05farmer.gender 

         male      1723     59740     59740     573.7      0.96     58615    60866 

 
Figure 3.8 
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       female        53      1913      1913     302.4     15.81      1320     2506 

        Total      1776     61653     61653         *         *         *        * 

 

Standard errors based on Taylor series approximations. Confidence limits use t-

distribution with 1701 d.f. 

 

 

Proportions with 95% confidence limits 

-------------------------------------- 

 

                      n   Sum wts      Mean      s.e.   %RSE/CV     Lower    Upper 

 05farmer.gender 

         male      1723     59740    0.9690  0.004905      0.51    0.9594   0.9786 

       female        53      1913    0.0310  0.004905     15.81    0.0214   0.0406 

         Mean      1776     61653    1.0000  0.000000      0.00    1.0000   1.0000 

 

Standard errors based on Taylor series approximations. Confidence limits use t-

distribution with 1701 d.f. 

 

 

Notice that Totals now produces tables of counts, whilst Means produces 

proportions. The Counts are equal to the sum of the weights shown in the analyses 

in Section 3.2 (Genstat has effectively analysed a variate with a value of 1.00 for 

each unit), but they are now accompanied by standard errors and confidence limits. 

The Counts for the grand total have no standard error, as the number of units (farms 

in this case) in the population is always taken to be a known constant; in practice it 

also subject to error, but these errors are not a consequence of the sample design of 

the current survey and so cannot be estimated from it. 

When two or more classification factors are specified, the proportions are 

expressed relative to the grand total. For example, an analysis by sex and 

education shows that 0.009 (i.e. just under 1%) of farmers in the population are 

female with a degree. If instead we wish to know what proportion of farmers with 

a degree are female, it is necessary to first restrict the analysis to farmers with a 

degree, and then to re-run the analysis as specified in Figure 3.8. 
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3.6 Ratios 

The General Survey Analysis menu 

(SVTABULATE command) can also 

estimate ratios, although, unlike the 

Single-stage Survey Analysis menu 

examined in Chapter 2, it cannot use 

these ratios directly to estimate a 

population total. To demonstrate this, 

we will estimate the ratio of subsidy 

to farmincome for farms in England. 

A complication is that many farms had 

negative farm incomes for the year of 

the survey. So we will restrict the 

analysis to those with a farm income 

greater than zero, using the By Value 

sub-option from the Restrict/Filter option 

of the Spread menu (Figure 3.9). 

To specify the ratio analysis, the 

Estimate ratio box should be ticked and 

farmincome clicked across to the X 

data box (i.e. the denominator of the 

ratio), with subsidy in the data box 

(numerator, see Figure 3.10). 

Farmsize has been specified as the 

Classification factor and the output is 

shown below. 

 

 

Survey analysis results 

======================= 

 

Summary of analysis 

------------------- 

 

Y-variate (response data):              subsidy 

X-variate:                              farmincome 

Correlation:                            0.109 

Method:                                 Design-based (expansion) 

Stratification factor:                  stratum 

Number of strata:                       75 

Components for variance calculation:    Between sampling units 

  
Figure 3.9 

 
Figure 3.10 



3  General survey analysis 48 

Confidence interval method:             tdistribution (95% limits) 

Total number of responses:              1776 

Survey weights:                         weight 

Weights range:                          Min = 1.483  Mean = 34.71  Max = 185.8 

Sum of weights:                         61653 

Note: statistics above relate to the whole sample, not just the subset defined by 

the restriction 

 

 

Ratios for subpopulation defined by restriction in subsidy with 95% confidence 

limits 

 

                      n   Sum wts     Ratio      s.e.   %RSE/CV     Lower    Upper 

     farmsize 

    Part-time       157     11403    0.8863   0.06970      7.86    0.7496   1.0230 

        Small       375     16878    0.6468   0.15203     23.50    0.3486   0.9450 

       Medium       309      8276    0.8592   0.06757      7.86    0.7266   0.9917 

        Large       276      5400    0.8115   0.05119      6.31    0.7111   0.9119 

   Very large       296      5197    0.5545   0.04173      7.52    0.4727   0.6364 

       Margin      1413     47154    0.6970   0.04944      7.09    0.6000   0.7940 

 

Standard errors based on Taylor series approximations. Confidence limits use t-

distribution with 1701 d.f. 

 

 

When interpreting ratios such as these, it is always wise to plot a scatter plot of 

the two variables, since the mean ratios shown in the table may reflect more 

complex relationships between 

the variables. Influence 

statistics are also available for 

the estimation of ratios and are 

once again useful in detecting 

outliers; when X data are 

provided these are calculated as 

the percentage change in the 

estimate of the ratio when the 

observation is replaced by a 

missing value.  

Figure 3.11 shows the 

scatter plot produced by ticking 

the Single scatter plot option on 

the General Survey Analysis 

Option menu (Figure 3.10). The 

scatter plots are plotted on the 

log-scale (except where 

negative values are present)  
Figure 3.11 



3  General survey analysis 49 

since survey variables are frequently strongly skewed, as is the case here. The line 

representing the relationship described by the overall ratio (i.e. y = 0.697x in this 

case) is shown on the graph; alternatively plots of the ratios for each level of the 

classification factor(s) can be obtained by ticking the box for Scatter plot for each 

stratum. A number of features are apparent in Figure 3.11. The overall correlation 

is not very high; the summary of analysis shown above indicates that the 

correlation is 0.109, but this is for the full dataset, not just the sub-population with 

positive farm incomes. A few points have extremely high ratios of subsidy for 

income, including the one that has been highlighted using the Data info button 

(arrow and question mark) on the toolbar. The information includes the variable 

from the Labels box (or the row number if this is blank), allowing the data to be 

checked in the spreadsheet if necessary. At the other extreme there is a row of 

points along the bottom of the graph, representing farms with no subsidy claim; to 

allow these points to be shown on the log scale, a small constant has been added to 

them. 

 

3.7 Quantiles and bootstrapping 

It is apparent from the previous sections that the distribution of the farm income 

data is markedly non-Normal. The distribution is skewed to the left, with a few 

very large values. In this respect it is rather like a log-Normal distribution, but 

there is also a significant number of negative values. In situations like this, 

comparisons between means may give an over-simplified picture of the true 

differences between groups. A more complete assessment can be made by looking 

at the quantiles of the distribution and Figure 3.12 shows how this may be done. 

The output is shown below.  
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Means with 95% confidence limits 

-------------------------------- 

 

                                n   Sum wts     Mean     s.e.   %RSE/CV     Lower    Upper 

              05farm.type 

                    Dairy     290     12289    27064     1751      6.47     23629    30499 

 Upland Grazing Livestock     234      5974    11775     1244     10.57      9335    14216 

Lowland Grazing Livestock     221      8835     5265      984     18.68      3336     7194 

                  Cereals     339     13125    14084     1955     13.88     10250    17918 

         General cropping     188      6589    26678     3847     14.42     19133    34224 

                     Pigs      60      1156    29032     5849     20.15     17561    40503 

                  Poultry      64      1643    97532    60195     61.72    -20532   215596 

                    Mixed     177      6176    17385     3162     18.19     11184    23586 

             Horticulture     203      5866    32710     4441     13.58     23999    41421 

                     Mean    1776     61653    21137     1830      8.66     17547    24726 

 

Standard errors based on Taylor series approximations. Confidence limits use t-distribution 

with 1701 d.f. 

 

 

Figure 3.12 
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Quantiles 

--------- 

 

                                q5%    q10%    q25%    q50%    q75%    q90%    q95% 

              05farm.type 

                    Dairy     -8028    1100    9003   18216   32808   65184   92758 

 Upland Grazing Livestock    -13230   -5698    1178    9211   17974   30477   40681 

Lowland Grazing Livestock    -13434   -7844   -2801    3871   11265   21796   28089 

                  Cereals    -33265  -21439   -3627    8768   27385   50521   66395 

         General cropping    -24768  -11164    3246   16593   35080   74370   97450 

                     Pigs    -28237  -17698   -2933   17032   48635  100309  155137 

                  Poultry    -71528  -10013    5849   24971   67515  128713  186460 

                    Mixed    -31761  -24042   -2335   11403   23968   72628   92128 

             Horticulture    -23058  -13406    1742   12950   41754   72524  136013 

                   Margin    -23400  -11501    1034   11683   27495   55663   84133 

 

 

The definition of a quantile is that the specified percentage of the population is 

less than or equal to the value shown. Thus, the table indicates that 25% of dairy 

farms have an income of £9003 or lower. The 50% quantile (q50%) is also known 

as the median, whilst the 25% and 75% values are the lower and upper quartiles. In 

the current example, the importance of looking at the quantiles can be seen by 

comparing the means and medians between dairy and horticultural farms. The 

mean is slightly higher (although not significantly so) for horticultural farms, but 

the median is markedly higher for dairy farms; the horticultural farm mean is being 

strongly influenced by a minority of very large enterprises; 5% have incomes 

above £136,000. 

The table of quantiles above does not show standard errors. This is because the 

Taylor-series approximation used to estimate variances for the other statistics is 

not applicable to quantiles. When standard error estimates are required, Genstat 

can calculate them by bootstrapping. Bootstrapping involves sampling with 

replacement from the original sample in each stratum to form a large number of 

bootstrap populations. The relevant statistics are then calculated for each bootstrap 

sample and estimates of the standard errors are derived from the variance of the 

distribution of these bootstrapped estimates. Alternatively, if sufficient bootstrap 

samples are used (ideally several thousand), confidence limits can be determined 

directly from the distribution of the bootstrapped estimates. 

Two basic methods of bootstrapping are provided within Genstat. The simple 

method is the approach used in non-survey settings in which observations are 

selected at random, with replacement, from the original sample ignoring the survey 

weights. When weights vary within a stratum, each observation remains associated 

with its weight, so that the sum of the weights in each bootstrap sample will not be 

exactly equal to the sum of the weights in the original populations. This approach 
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ignores the finite nature of the population, but this is seldom a problem in practice, 

except when the sampling proportion is very high.  

The second method is known as sarndal3 and involves first constructing a 

pseudo-population, with each unit being replicated w times, where w is the 

appropriate weight, rounded to the nearest integer. For stratified designs, the 

process is carried out separately in each stratum. Sampling is then carried out, 

without replacement, using the inverse of the weights as inclusion probabilities. 

For reasons of computational simplicity, the bootstrap sample sizes are not fixed, 

and will therefore differ slightly from the one in the original sample. This method 

takes account of the finite nature of the population, but it is computationally 

slower. 

Figure 3.13 shows the settings 

for bootstrapping the tables of farm 

incomes for each farm type. Two 

hundred bootstrap samples have 

been specified, and the Using method 

list box has been left at the default 

of Automatic; this forms confidence 

limits from the t-distribution, using 

standard error from the bootstrapped 

samples, when less than four 

hundred bootstrapped samples are 

used, but otherwise uses percentile 

limits. The Seed option has been left 

at its default of zero; this option 

should be set to a number with four 

or more digits if you want to be able 

to repeat the analysis and obtain 

identical results. If it is left at zero, a 

fresh set of random numbers is used 

to construct the bootstrapped 

samples, so that slightly different 

results will be produced each time 

the command is run. 

 
3 Sarndal, C., Swensson, B. & Wretman, J. (1992). Model Assisted Survey Sampling. Springer-

Verlag, New York. See page 442. 

Figure 3.13 
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One complication with the analysis is that bootstrapping requires a reasonable 

sample size in each stratum to produce reliable results. The FBS dataset contains 

some very small strata, and so it is best to form a new stratification variable, 

combining the smaller strata where necessary, before using bootstrapping. To 

achieve this, Recode should 

be selected from the Factor 

sub-menu of the Spread 

menu, with the cursor in the 

existing stratum factor. 

The strata can then be 

combined as required. Figure 

3.14 shows this process; the 

specialist fruit and glass 

categories have been edited 

to combine them into size 

categories for all 

horticulture, with the 

exception of the very large-

size categories, where 

sample sizes are more 

reasonable. 

Results of the analysis are shown below. 

 

 

Survey analysis results 

======================= 

 

Summary of analysis 

------------------- 

 

Y-variate (response data):              farmincome 

Method:                                 Design-based (expansion) 

Stratification factor:                  mergedstratum 

Number of strata:                       48 

Components for variance calculation:    Resampling sampling units 

Bootstrap method:                       simple 

Number of bootstrap samples             200 

Confidence interval method:             tdistribution (95% limits) 

Total number of responses:              1776 

Survey weights:                         weight 

Weights range:                          Min = 1.483  Mean = 34.71  Max = 185.8 

Sum of weights:                         61653 

 

 

Means with 95% confidence limits 

-------------------------------- 

 
Figure 3.14 
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                                n   Sum wts     Mean     s.e.   %RSE/CV     Lower    Upper 

                     type 

                    Dairy     290     12289    27064    1937      7.16     23266    30863 

 Upland Grazing Livestock     234      5974    11775    1340     11.38      9147    14404 

Lowland Grazing Livestock     221      8835     5265     960     18.24      3382     7148 

                  Cereals     339     13125    14084    1848     13.12     10459    17708 

         General cropping     188      6589    26678    3787     14.19     19251    34105 

                     Pigs      60      1156    29032    6574     22.64     16138    41925 

                  Poultry      64      1643    97532   59159     60.66    -18499   213563 

                    Mixed     177      6176    17385    3423     19.69     10671    24099 

             Horticulture     203      5866    32710    4497     13.75     23890    41530 

                     Mean    1776     61653    21137    1786      8.45     17633    24640 

 

Standard errors based on 200 bootstrap samples. Confidence limits use t-distribution with 1728 

d.f. 

 

 

Quantiles with 95% confidence limits 

------------------------------------ 

 

                                 q50%        s.e.       Lower       Upper 

                     type 

                    Dairy       18216        1598       15083       21349 

 Upland Grazing Livestock        9211        1819        5643       12779 

Lowland Grazing Livestock        3871         737        2426        5316 

                  Cereals        8768        1730        5375       12161 

         General cropping       16593        1413       13822       19364 

                     Pigs       17032        7782        1768       32296 

                  Poultry       24971        5566       14055       35887 

                    Mixed       11403        2190        7107       15699 

             Horticulture       12950        3295        6487       19413 

                   Margin       11683         597       10511       12855 

 

Standard errors based on 200 bootstrap samples. Confidence limits use t-distribution with 1728 

d.f. 

 

3.8 Multiple-response tables 

All the classification factors used in the analyses up to this point have had a single 

value for each unit. Thus, for example, farms have been classified to the most 

appropriate type on the basis of their activities. A farm with both dairy cattle and 

cereal crops, will be classified to one group or the other, depending on which 

enterprise is more economically important; it cannot be in both the dairy and 

cereals categories simultaneously. 

Sometimes it is more helpful to form tables classified by a multiple-response 

factor, where each unit can contribute to two or more cells in the same table. For 

example, suppose that in a questionnaire respondents are asked to state which 

languages they can speak and have a number of boxes in which to respond. Using 

multiple-response factors a table can be formed with a row for each language, so 



3  General survey analysis 55 

that, for example, some people contribute to both the French and German rows. 

More details on how Genstat handles multiple-response factors can be found in the 

Syntax and Data Management Guide (available from the Genstat Guides option on 

the Help menu. 

In this section we will 

concentrate on how the 
General Survey Analysis 
menu can be used to form 

tables from multiple-

response data from 

surveys, using the FBS 

dataset as an example. 

The data describe the 

types of livestock found 

on each farm, and may be 

found in the file 

FBSmult.gwb; note that 

this is a Genstat 

workbook with several 

different worksheets 

within it, whereas the 

files that we have used 

previously are .GSH files 

containing a single worksheet. For illustration purposes, the worksheets grouped 

and types present the same data in two alternative formats. We shall start by 

examining the data in sheet types (Figure 3.15). This is the format that would 

arise if farmers were asked which livestock they had on the farm, and given three 

different text boxes to record their results. The available responses are dairy 

(cattle), beef (cattle), sheep or pigs. The data in the spreadsheet are in text columns 

(note the green T by the variable names); they could equally well be in factors, but 

the next step requires the data as texts, so they should be converted to texts before 

proceeding. 

 
Figure 3.15 
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To form the multiple-

response factors, select Form 

Multiple-Response Factors from 

the Data menu to open the 
Form Multiple-Response Factors 
menu (Figure 3.16). The 

three text structures are 

clicked across, suitable 

names are given for the new 

factors to be created, and 

labels are defined to represent 

a null value. 

Whilst not strictly 

necessary for the analysis, it 

is useful to add the new 

multiple-response factors to 

the spreadsheet (Data in 

Genstat from the Add option 

of the Spread menu), in order 

to understand how Genstat 

stores the information. 

Genstat creates a series of 

five new factors, four for the 

different types of livestock and one for null responses. All the factors have the 

levels 0 and 1, with 1’s being represented by the factor label present for the 

livestock types and no response for the null factor (Figure 3.17). 

 
Figure 3.16 

 
Figure 3.17 
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When data are supplied in a separate spreadsheet to the main data, it is essential 

to check that they are correctly matched, since mismatched data (e.g. if one sheet 

has been sorted by farm type and the other by farm number) are a frequent cause 

of errors. One option is to merge the two spreadsheets as in Section 3.1. In other 

cases, it may be preferable to keep them separate, particularly if the dataset is so 

large that a merged file would be excessively big. When this is a case, a check 

should always be carried out before analysis. There are various ways of doing this, 

but one option is to use 

Summary Statistics from the 

Summary Statistics sub-option 

on the Stats menu. This is 

shown in Figure 3.18. To avoid 

calculating a new variable, the 

expression farm-farm3 has 

been typed in the Variates box, 

farm being the farm identifier 

in the main dataset, and farm3 

the identifier in the multiple 

dataset. Results are shown 

below: as expected, the 

calculation always produces a 

result of zero indicating that 

the datasets are correctly 

matched. 

 

 

Summary statistics for Y[1] 

=========================== 

 

      Number of observations = 1776 

    Number of missing values = 0 

                        Mean = 0 

                      Median = 0 

                     Minimum = 0 

                     Maximum = 0 

              Lower quartile = 0 

              Upper quartile = 0 

 

  
Figure 3.18 
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The analysis can now be 

specified using the General Survey 

Analysis menu (Figure 3.19). The 

means produced are shown 

below. 

 

 

 

 

 

 

 

 

 

 

 

 
 

Means with 95% confidence limits 

-------------------------------- 

 

                      n   Sum wts      Mean     s.e.   %RSE/CV     Lower    Upper 

     mrfac[1] 

        none        893     31783     24882     3457     13.89     18101    31663 

         Beef       446     14308     10787     1272     11.79      8292    13283 

        Dairy       257      9950     29394     2194      7.46     25092    33697 

         Pigs        61      1564     27272     6819     25.00     13897    40646 

        Sheep       510     14778     11819     1079      9.13      9702    13935 

         Mean      1776     61653     21137     1830      8.66     17547    24726 

 

Standard errors based on Taylor series approximations. Confidence limits use t-

distribution with 1701 d.f. 

 

Notice that the sums of the numbers of observations (n) and the weights (Sum 

wts) are now higher than in the margin of the table (row labelled mean). This is 

because all farms are represented at least once in the individual rows, but those 

with more than one livestock type are included in two or more rows. 

 

Figure 3.19 



3  General survey analysis 59 

3.9 Two-stage samples 

Whilst many surveys employ a single level of sampling, in others two or more 

levels are used. Sometimes this is necessary because a complete sampling frame is 

unavailable. For example, in a survey of educational performance, we may lack the 

complete list of all pupils in all schools (sampling frame) that would be needed to 

sample by random, or stratified random, sampling. However, if a complete list of 

schools exists, we can sample from these at random and then obtain pupil lists 

from the selected schools in order to implement a second stage of sampling to 

select pupils within each of these schools. 

With increasing computerization of administrative data, particularly in 

industrialized countries, a complete sampling frame is more often available, thus 

allowing the use of single-stage sampling. For a given sample size, a single-stage 

survey will nearly always be more precise than a two-stage one. However, a two-

stage approach may still be the most cost-effective solution when there are 

substantial overheads that are proportional to the number of higher level units. To 

return to the educational survey example, if we used a simple random sample of 

one hundred pupils, these might come from many different schools, making the 

survey expensive if visits were needed to each school. For the same cost it might 

be possible to sample, for example, twenty pupils from each of ten schools, using a 

two-stage design. In this situation the increased number of pupils in the two-stage 

design might well outweigh the inherent inefficiency of the design. 

File Malawi7.gsh contains data from a multi-stage survey of households in 

Malawi4. A minimum of three Extension Planning Areas (EPAs) were selected at 

random from the seven Agricultural Development Divisions (ADDs), and then two 

villages were selected at random from each EPA. It is thus a two-stage stratified 

design, with the ADDs being the strata, the EPA the first stage (primary) sampling 

units, and villages as the secondary sampling units. Weights are supplied in this 

file; we shall demonstrate how they are calculated in the next chapter. 

 
4 Data from the Malawi Ground Truth Investigation Study are supplied by permission of Dr Roger 

Stern, Statistical Services Centre, University of Reading, U.K. We have used data from seven of 

the eight strata (ADDs) where adequate numbers of secondary units were sampled.  
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Figure 3.20 

shows the General 

Survey Analysis menu 

for analysis of the 

number of 

households 

enumerated in each 

village (column 

GTIS-hh). Notice 

that ADD is listed in 

the Classification 

factor(s) box as well 

as the Stratification 

factor one; if this 

was not done the 

same estimate of the grand total would be produced, but the output table would not 

be classified by ADD. When the Run button is clicked the following warning 

appears. 

 

 

******** Warning 12, code UF 2, statement 292 in procedure SVTABULATE 

 

Insufficient information to calculate FPC. 

 

 

Because only survey weights have been supplied, rather than full information 

on the number of primary units in each stratum and secondary units in each 

primary unit, Genstat cannot calculate the finite population correction (FPC) and it 

prints a warning to this effect. The warning can be suppressed, if desired, by 

clicking on the Omit button under Finite population correction on the options menu. In 

this situation Genstat uses the ultimate clusters form of analysis, basing the 

variance estimates only on the variance between primary units, ignoring the 

variance between secondary units, except insofar as it is reflected in the 

differences between primary units. This is a reasonable approach for large surveys 

if, as is frequently the case, the variance between secondary units is comparatively 

small. 

Output is shown below and is basically similar to that produced from a single-

stage survey, apart from the extra summary information relating to the primary 

sampling units (PSUs). 

Figure 3.20 
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Survey analysis results 

======================= 

 

Summary of analysis 

------------------- 

 

Y-variate (response data):              GTIS_hh 

Method:                                 Design-based (expansion) 

Stratification factor:                  ADD 

Number of strata:                       7 

Primary sampling units:                 EPA 

Number of PSUs sampled:                 26 

Components for variance calculation:    Between PSUs (ultimate clusters) 

Confidence interval method:             tdistribution (95% limits) 

Total number of responses:              52 

Survey weights:                         weight 

Weights range:                          Min = 60.00  Mean = 429.5  Max = 1597 

Sum of weights:                         22335 

 

Totals with 95% confidence limits 

--------------------------------- 

 

                     n   Sum wts     Total     s.e.   %RSE/CV     Lower     Upper 

          ADD 

     Blantyre        8      1775    350446   125578     35.83     87608    613285 

      Karonga        6       696     77172    14089     18.26     47683    106661 

      Kasungu        8      3958    177856    20648     11.61    134640    221072 

     Lilongwe       10      8653    390058    65016     16.67    253977    526138 

     Machinga        8      2524    239382   111709     46.67      5573    473191 

        Mzuzu        6      3113    295730    68280     23.09    152818    438641 

       Salima        6      1615    330997    52661     15.91    220777    441218 

        Total       52     22335   1861641   201336     10.81   1440241   2283042 

 

Standard errors based on Taylor series approximations. Confidence limits use t-

distribution with 19 d.f. 

 

Whilst the ultimate clusters approach is often a reasonable approximation, it is 

generally preferable to include the contribution from variance between secondary 

units (EPAs) in the analysis. This can be done by supplying the number of EPAs in 

each ADD. (We could also supply the number of villages per EPA, but since the 

supplied weights are assumed to represent the inverse of the combined probability 

of selection at both stages, this information can be calculated from the number of 

EPAs per ADD.) This information is best supplied in a table classified by ADD. It is 

also possible to supply the figures in a variate with one row for each stratum. 

However, if this is done, great care must be taken to ensure that the strata are listed 

in the correct order.  

Figure 3.21 shows the process of creating a table. We first select Create from 

the New sub-option of the Spread menu, and then select Table and tick Create from 

Existing Factors. At the next menu we chose ADD as the classifying factor to produce 
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a new spreadsheet. The relevant values can then be added into the table, as is 

shown in the right hand image of Figure 3.21. 

 

 
Once the table has been created it can be used to supply the population sizes by 

ticking the Population sizes box and clicking on the Specify button as is shown in 

Figure 3.22. The results below show that specifying the full design in this way 

causes a substantial change in the variance estimates in this example. 

 

 
 

Figure 3.21 

Figure 3.22 
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Survey analysis results 

======================= 

 

Summary of analysis 

------------------- 

 

Y-variate (response data):              GTIS_hh 

Method:                                 Design-based (expansion) 

Stratification factor:                  ADD 

Number of strata:                       7 

Primary sampling units:                 EPA 

Number of PSUs sampled:                 26 

Components for variance calculation:    Between PSUs & within PSUs 

Confidence interval method:             tdistribution (95% limits) 

Total number of responses:              52 

Survey weights:                         weight 

Weights range:                          Min = 60.00  Mean = 429.5  Max = 1597 

Sum of weights:                         22335 

 

 

Totals with 95% confidence limits 

--------------------------------- 

 

                     n   Sum wts     Total      s.e.   %RSE/CV     Lower     Upper 

          ADD 

     Blantyre        8      1775    350446    125704     35.87     87344    613549 

      Karonga        6       696     77172     18441     23.90     38575    115769 

      Kasungu        8      3958    177856     34478     19.39    105693    250019 

     Lilongwe       10      8653    390058     86528     22.18    208953    571162 

     Machinga        8      2524    239382    130909     54.69    -34613    513377 

        Mzuzu        6      3113    295730     74636     25.24    139514    451945 

       Salima        6      1615    330997     77638     23.46    168499    493496 

        Total       52     22335   1861641    231415     12.43   1377285   2345998 

 

Standard errors based on Taylor series approximations. Confidence limits use t-

distribution with 19 d.f. 
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4 Weights and imputation 

In the previous chapter all the datasets included a column of survey weights, so 

there was no need to calculate them prior to analysis. This is frequently how 

complex datasets are supplied to researchers for further analysis. However, if you 

are analysing a survey from the outset, you may need to calculate a set of survey 

weights before using the methods in Chapter 3. It is possible to avoid calculating 

weights explicitly by using the Population sizes box on the General Survey Analysis 

menu. However, this is generally sensible only for small surveys, or for single-

stage surveys where the methods described in Chapter 2 are adequate. For larger 

surveys with many variables it is usually easier to calculate the weights, not least 

because there will often be a need to modify them in some way, for example to 

deal with unusual observations. 

In this chapter you will learn how to create survey weights, how to modify 

them to allow for outliers or missing data, and how to use calibration weighting to 

ensure that they reflect known population totals. You will also learn how 

imputation can be used to allow for missing values in a dataset. 

 

4.1 Creating survey weights 

We shall illustrate how to create survey weights using the June Agricultural 

Survey data introduced in Chapter 2. File Juneresponse.gwb contains two 

sheets; sheet response contains figures from those farms that were selected for 

and responded to the survey, whilst sheet nfarm holds a table showing the total 

number of farms in each stratum of the survey population. See Section 1.6 for 

details of how to create such tables. 
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Open the file so that 

the data are sent to the 

Genstat server, and then 

open the Create Survey 

Weights menu from the 

Survey Analysis option on 

the Stats menu. 

Figure 4.1 shows this 

menu with the 

appropriate settings. 

Since a stratified random 

survey is specified, the 

boxes relating to 

sampling units are greyed 

out, but data can be 

entered in these in the 

same way for two-stage 

designs. When the Run 

button is pressed a brief summary of the weights is created in the output window. 

 

 

Create Survey Weights 

===================== 

 

Summary of weights 

------------------ 

 

Survey weights:     weights 

Weights range:      Min = 1.750 Mean =3.478 Max = 5.898 

Sum of weights:     19156 

 

 

Weights summary by stratum 

-------------------------- 

 

                  mean wt 

       strata 

          new       2.131 

        small       5.898 

       medium       4.883 

        large       3.249 

   very large       1.750 

Weights are constant within each stratum 

 

 

 
Figure 4.1 
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To understand where these weights come from, it is useful to display some of 

the output of the same data from the Single-stage Survey Analysis menu, originally 

displayed in Section 2.1: 

 

 

               Total no. obs.  Imputed    Sample  Excluded  Sampling fraction 

       strata 

          new            2613      1387      1226         0              0.469 

        small            5851      4859       992         0              0.170 

       medium            5479      4357      1122         0              0.205 

        large            3074      2128       946         0              0.308 

   very large            2139       917      1222         0              0.571 

        Total           19156     13648      5508         0              0.288 

 

 

In this output the sampling fraction is the number of observations in the sample 

divided by the number of units (farms in this case) in the whole population; for 

example, for the new stratum 1226/2613=0.469. The weights calculated above are 

the inverses of the sampling fractions (i.e. 2613/1226 = 2.131 = 1/0.469); these are 

known as probability weights. It should be noticed that in this case, the ‘sampling 

fraction’ actually represents a combination of the processes of sampling and 

response (or non-response). Treating non-response in this way (as if it were really 

part of the sampling process) is common practice, and is valid if it is believed that 

non-response occurs approximately at random with respect to the variables to be 

analysed. It is an approach that should be used with caution when response rates 

are low, and it will produce biased results if the probability of response is related 

to the data analysed; for example, if holdings with large wheat areas are more 

likely to respond. More sophisticated forms of non-response adjustment are needed 

in these situations. 

It is often useful to store the new weights in the main datafile. With the 

spreadsheet Juneresponse.gwb open at the responses sheet, select Data in 

Genstat from the Add option of the Spread menu. At the next menu, move weights 

across to the box on the right and click Add. Weights will be added to the far right 

hand size of the spreadsheet, but it can be moved to the left, if desired, by hovering 

the mouse over the variable name so that the cursor changes to a hand, holding the 

left mouse button down and dragging it across. 
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4.2 Practical 

Using the weights created above, analyse the wheat data (A1_wheat) with the 

General Survey Analysis menu. Verify that it gives the same results as those shown in 

Section 2.1. You may notice that the confidence limits are very slightly different. 

This is because different approximations are used to calculate the degrees of 

freedom for the t-statistic; the approximation used by the General Survey Analysis 

menu (SVTABULATE command) is cruder, but is generally applicable5. 

 

4.3 Modifying weights for missing data 

Sometimes survey respondents fail to supply data for all of the questions (item 

non-response). For example, the Juneresponse.gwb dataset contains a column 

berror which identifies units where anomalies were detected in the responses to 

section B of the survey during the validation process. It may therefore be sensible 

to exclude these units from the analysis of questions B5_peas and B21_veg. 

One option, when we are interested in estimating a mean or a ratio, is simply to 

exclude these items from the analysis using a restriction (see Section 3.3). When 

we want to estimate the population total, this approach is not sensible, since 

estimates would relate to the subpopulation without such errors and hence would 

be biased downwards relative to the full population. Instead it is necessary to form 

a new set of weights, treating the units with anomalies as if they were unsampled, 

provided, of course, that it is reasonable to regard these units as being missing at 

random. This could be done by forming a new dataset of valid responses to section 

B of the survey, excluding the suspect data, and then repeating the process 

described in Section 4.1. However, it is generally preferable to use modified 

weights within the existing dataset, so that the suspect observations remain in the 

dataset, but are ignored in the analysis. 

 
5 SVSTRATIFIED uses the effective degrees of freedom described by, for example, Sampford 

(1962, An introduction to sampling theory) which weights the degrees of freedom according to 

each stratum’s contribution to the variance. SVTABULATE takes d.f. as the total number of 

primary sampling units less the number of strata. 



4  Weights and imputation 68 

Figure 4.2 shows the Modify Survey Weights menu with the appropriate settings. 

The Observations to reweight box can be used to supply a list of the appropriate 

observations (see next section), but it is often easier to indicate these using a 

variate of 0’s and 1’s, where the 1’s indicate the observations that need 

reweighting. This is precisely what column berror contains, and so it is clicked 

across into the box. The Options menu can be left with the standard default settings, 

as shown in Figure 4.2. Since the Missing (exclude from analysis) button is selected, 

the missing observations will have their weights set to missing values. 

In order to ensure that the weights still produce estimates totals for the full 

population, the weights previously assigned to the observations now treated as 

missing must be redistributed to other observations. This reallocation may be done 

over the whole survey, within each stratum, or, in the case of a two-stage survey 

within each primary sampling unit. By default the Lowest specified level is used; in 

the case of a stratified random survey like this, that means that redistribution is 

within each stratum. 

 
Figure 4.2 
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4.4 Modifying weights for outliers 

In Section 2.3 we considered the various approaches for dealing with outliers in 

the context of the Single-stage Survey menu. Whilst the same principles apply to all 

surveys, the way of achieving the modified analyses is rather different using the 

General Survey Analysis menu. 

It is worth making the point once again that, just because an observation is 

influential, it is not necessarily appropriate to adjust the analysis to reduce this 

influence. On the contrary, unless there is evidence to suggest that the record is 

erroneous, or in some way different to the rest of the population, the original 

analysis should stand. However, particularly with a statistically literate audience, 

one option may be to report results with and without the outlier, so that readers can 

judge the impact for themselves. The analysis without the outlier is obtained by 

treating the observation as missing, as in the previous section. 

Sometimes it is required to retain an observation as a valid response but to 

reduce its weight. There are various methods that routinely use such modified 

weights in order to produce robust, but biased, estimates of population totals. We 

will not consider these methods here, but instead deal with the simpler situation 

where an observation although correct, is not considered representative of the 

wider population. We shall illustrate this using the June Survey dataset and 

considering the problem of how to estimate the ratio of between the area of wheat 

grown in the survey year and the area grown in the previous year. This is the same 

example that we used to illustrate outliers in Section 2.3, with the Single-stage 

Survey Analysis menu. 

The analysis with all observations included is shown below. Because no 

previous crop areas are available for farms in the new stratum, the analysis must be 

restricted to the subpopulation excluding this stratum. This is achieved by 

selecting To Groups (factor levels) from the Restrict/Filter option on the Spread menu 

(Figure 4.3). The analysis is then produced using the settings shown in Figure 4.4. 
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Figure 4.3 

 
Figure 4.4 
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Survey analysis results 

======================= 

 

Summary of analysis 

------------------- 

 

Y-variate (response data):              A1_wheat 

X-variate:                              xa1 

Correlation:                            0.935 

Method:                                 Design-based (expansion) 

Stratification factor:                  strata 

Number of strata:                       5 

Components for variance calculation:    Between sampling units 

Confidence interval method:             tdistribution (95% limits) 

Total number of responses:              5508 

Survey weights:                         weights 

Weights range:                          Min = 1.750  Mean = 3.478  Max = 5.898 

Sum of weights:                         19156 

Note: statistics above relate to the whole sample, not just the subset defined by 

the restriction 

 

 

Ratios for subpopulation defined by restriction in A1_wheat with 95% confidence 

limits 

---------------------------------------------------------------------------------- 

 

                      n   Sum wts     Ratio      s.e.   %RSE/CV     Lower    Upper 

       strata 

          new         0         0         *         *         *         *        * 

        small       992      5851    0.8209   0.04604      5.61    0.7307   0.9112 

       medium      1122      5479    0.8593   0.02163      2.52    0.8169   0.9017 

        large       946      3074    0.9047   0.01990      2.20    0.8657   0.9437 

   very large      1222      2139    0.9124   0.00609      0.67    0.9004   0.9243 

       Margin      4282     16543    0.8965   0.00772      0.86    0.8813   0.9116 

 

Standard errors based on Taylor series approximations. Confidence limits use t-

distribution with 5503 d.f. 

 

 

10 points with highest percentage influence on overall ratio 

------------------------------------------------------------ 

 

holding      strata           Weight    A1_wheat         xa1  %influence 

232480050    large             3.249        21.2       212.6      0.0852 

232980220    very large        1.750         0.0       345.8      0.0844 

281070004    medium            4.883       195.2        48.8      0.1147 

343460118    large             3.249      1116.6       112.9      0.5087 

344230042    large             3.249         0.0       263.0      0.1185 

347310134    large             3.249         0.0       187.1      0.0844 

383090082    large             3.249       330.0       136.0      0.1040 

388090049    large             3.249       439.4        69.0      0.1889 

614160015    very large        1.750       722.0       224.0      0.1400 

615950014    large             3.249         0.0       216.7      0.0977 

 

* Note: The influence value is the percent change in the estimate when the 

observation is omitted 
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The observation with the highest influence is holding number 343460118, 

which increased its wheat area from just over a hundred hectares to well over a 

thousand. In fact, as described in Section 2.3, this is in fact a transcription error 

and the true value was only 116.6ha. However, for the purposes of illustration, let 

us suppose that the wheat area of 1116.6ha was correct, but that this increase was 

dictated by an unusual requirement of an environmental scheme that applied to no 

other farm in the country. Hence it would be incorrect to extrapolate this result to 

other farms in the large stratum, so the holding should instead be given the 

weight of 1.0 and treated as if it was in its own stratum. 

Figure 4.5 shows how this may be achieved using the Modify Survey Weights 

menu. With small numbers of outliers, it is generally simplest just to list the 

observation(s) in the Observations to reweight box, making sure that the Labels box is 

set to the appropriate variable (by default, if this is unset, row numbers are used). 

However, if preferred, the outliers can be identified using a variate of 0’s and 1’s, 

as in the previous section. As well as changing the default New value for weights 

from Missing to One, it is helpful (although not essential) to define a new 

stratification factor by clicking on the Store button, as shown in the lower image of 

Figure 4.5. The analysis can then be rerun, exactly as in Figure 4.4 except that the 

Stratification factor is set to strat_exoutlier and Weights are wt_exoutlier. 

  
 

 
Figure 4.5 
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The modified analysis is shown below; as expected, the outlier is now in its own 

stratum with a total weight of 1.0 and a ratio of 9.89 (i.e. 1116.6/112.9).  

 

 

Survey analysis results 

======================= 

 

Summary of analysis 

------------------- 

 

Y-variate (response data):              A1_wheat 

X-variate:                              xa1 

Correlation:                            0.935 

Method:                                 Design-based (expansion) 

Stratification factor:                  strat_exoutlier 

Number of strata:                       6 

Components for variance calculation:    Between sampling units 

Confidence interval method:             tdistribution (95% limits) 

Total number of responses:              5508 

Survey weights:                         wt_exoutlier 

Weights range:                          Min = 1.000  Mean = 3.478  Max = 5.898 

Sum of weights:                         19156 

Note: statistics above relate to the whole sample, not just the subset defined by the 

restriction 

 

 

Ratios for subpopulation defined by restriction in A1_wheat with 95% confidence limits 

-------------------------------------------------------------------------------------- 

 

                        n   Sum wts     Ratio      s.e.   %RSE/CV     Lower     Upper 

strat_exoutlier 

            new         0         0         *         *         *         *         * 

          small       992      5851     0.821   0.04604      5.61     0.731     0.911 

         medium      1122      5479     0.859   0.02163      2.52     0.817     0.902 

          large       945      3073     0.888   0.01436      1.62     0.860     0.916 

     very large      1222      2139     0.912   0.00609      0.67     0.900     0.924 

       Outliers         1         1     9.890   0.00000      0.00     9.890     9.890 

         Margin      4282     16543     0.893   0.00672      0.75     0.880     0.906 

 

Standard errors based on Taylor series approximations. Confidence limits use  

t-distribution with 5502 d.f. 
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4.5 Calibration weighting 

Calibration weighting is an approach that can be used to modify an initial set of 

weights, either to remove bias or to ensure that the weights reproduce known 

population totals. We shall illustrate the approach using the FBS dataset, using 

data from sheet crops of FBSmult.gwb; this lists areas of wheat, barley and 

oilseed rape for each of the FBS farms, whilst sheet croptotals gives the 

estimates of the English national areas of these crops from the much larger June 

Survey. Using the original weights representing the inverse of the probability of 

selection, which are in the variate uncalibrated_wt, we can estimate total areas 

and compare these with the June survey areas. There are some substantial 

differences, particularly for oilseed rape, and so we will use calibration to ensure 

that the FBS totals match the June ones. 

The initial FBS estimate of the oilseed rape area is 584 thousand hectares, 

compared with a June Survey result of 464 thousand hectares. 

 

Survey analysis results 

======================= 

 

Summary of analysis 

------------------- 

 

Y-variate (response data):              osr 

Method:                                 Design-based (expansion) 

Stratification factor:                  stratum 

Number of strata:                       75 

Components for variance calculation:    Between sampling units 

Confidence interval method:             tdistribution (95% limits) 

Total number of responses:              1776 

Survey weights:                         uncalibrated_wt 

Weights range:                          Min = 4.597  Mean = 34.72  Max = 146.0 

Sum of weights:                         61655 

 

 

Totals with 95% confidence limits 

--------------------------------- 

 

                      n   Sum wts     Total     s.e.   %RSE/CV     Lower    Upper 

      Alldata 

     All data      1776     61655    584285    26494      4.53    532320   636250 

 

Standard errors based on Taylor series approximations. Confidence limits use t-

distribution with 1701 d.f. 
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When such large discrepancies occur, careful checking is needed to ensure that 

the discrepancy is genuine, and is not the result of an artefact, such as a difference 

in definition between the two data sources. For the purposes of illustration, let us 

assume that this difference is genuine, and results from the chance selection of an 

FBS sample containing too many farms with large areas of rape. It is therefore 

sensible to use calibration to reduce the weight associated with such farms, so that 

they are correctly represented in estimates of population totals despite being 

accidentally over-sampled. 

Figure 4.6 shows how this is carried out using the Calibration Weighting option of 

the Survey Analysis menu. Calibration can be done separately in each stratum of a 

stratified design, but this depends on having good estimates of the population 

totals relating to the separate strata. Since sheet croptotals just contains a single 

national figure for all strata, in this instance we will specify a simple random 

survey as the design, so that a single calibration is used across all strata. 

Note that the Data box can be left empty; this is used only when it is required to 

produce estimates of population totals with standard errors allowing for the 

calibration process. The approach relies on the relationship between calibration 

and regression analysis of surveys, calculating standard errors using the variance 

about the regression line, in the same way that ratio analysis calculates standard 

errors about the ratio line (see Section 2.2). The calibration menu only allows the 

calculation of population totals, but the Save Fitted Values box allows fitted values 

 

Figure 4.6 
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to be saved and passed to the SVTABULATE command (General Survey Analysis 

menu) in order to calculate other statistics (see the practical in Section 4.7). Once a 

calibration analysis has been run, the fitted values for other variables may be 

calculated without the need to repeat the calibration by selecting the Fitted Values 

button in the Method section of the Survey Calibration Weighting Options menu. 

Calibration involves specifying one or more constraints, such as the weighted 

estimate of the rape area equalling 464 thousand hectares; the initial weights are 

then modified to achieve these constraints whilst minimising the difference 

between the initial and calibrated weights. The constraints are supplied by clicking 

on the Specify Constraints button, and then supplying them using the top two boxes 

in the Survey Calibration Constraints menu. Thus, in Figure 4.6 the national estimate 

of the rape area, 463935 hectares, has been entered in the first box and osr has 

been specified as the corresponding variable which is multiplied by the new 

weights to achieve the constraint value. Alternatively, the constraint value may be 

supplied in a Genstat structure of type scalar or table; suitable structures are listed 

in the drop down list. When the constraint is correctly specified, clicking the Add 

Constraint button moves it into the list of Currently selected constraints. 

During calibration it is generally necessary to ensure that the sum of the 

weights remains constant, since this represents the size of the population. This is 

achieved by specifying a constraint equal to the sum of the original weights, 61655 

in this case. The corresponding x-variable is left unset. When this constraint is 

added Genstat displays the x-variable as <count> (see Figure 4.6) and analyses it 

as if a vector of 1’s had been provided. 

When the Run button is clicked a summary of the changes to the weights is 

produced, as shown below. Note that with large datasets the process may take 

some time, particularly with the iterative methods (truncated linear or logistic), and 

it may be helpful to tick the Monitoring box in the Options menu in order to check 

how the calculations are progressing.  
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Survey calibration 

================== 

 

Method:                                 linear 

Stratification factor:                  No_strata 

Number of strata:                       1 

Total number of data values used:       1776 

Input weights:                          Min = 4.597 Median = 28.87 Max = 146.0 

Adjusted weights:                       Min = 2.914 Median = 28.52 Max = 149.3 

Correlation input & adjusted wts:       0.996 

 

                  Target    Initial    % error      Final    % error 

   Constraint 

        Count      61655      61655       0.00      61655       0.00 

          osr     463935     584285      25.94     463935       0.00 

 

 

The output lists the 

constraints and the percentage 

error from the target value for 

both the initial and calibrated 

weights; the latter should of 

course be zero, if the algorithm 

has reached a satisfactory 

convergence. Whilst the output 

gives some basic statistics 

comparing the old and new 

weights, including their 

correlation, it is sensible to 

examine a graph of the new 

calibrated weights against the 

initial ones. This can be 

obtained by ticking the Weights 

plot box on the Options menu 

and is shown in Figure 4.7. 

Whilst the adjustments to the weights are generally small, a number of farms with 

initial weights around about 25 have much smaller calibrated weights. The data 

information tool (see Section 1.3) can be used to find out more about these points; 

the initial weight is 23.4 and the bottom point has a calibrated weight of 4.12. 

These points represent farms with high rape areas, and so reducing their weights 

pulls the estimate of the total rape area down towards the constraint value. If these 

adjustments are considered excessive, it may be preferable to use either the 

 

Figure 4.7 
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truncated linear or logistic methods, both of which impose lower and upper bounds 

on the adjustments to the initial weights; the former still uses a linear scale to 

relate the two sets of weights, whilst the latter uses a logit-like transformation. The 

bounds are specified as limits on the g-weights (that is the multipliers applied to 

the original weights); by default they are set to 0.1 and 10, so that all calibrated 

weights must be at least one tenth of the initial weight and not more than ten times 

as big.  

Particularly when working with multiple constraints, it is generally helpful to 

run a number of calibrations using different methods, different limits and even 

different combinations of the possible constraints. The various plots of the weights 

can then be compared in order to decide upon one that achieves the desired aims 

without excessive adjustment to the weights of particular units. Failure to check 

the graphs can result in the use of unsatisfactory calibration weights, and hence 

problems with highly influential observations in the subsequent analyses. 

4.6 Calibration by groups 

In the above example, a single national estimate for the area of oilseed rape was 

available. If instead an estimate was available for each farmsize category, this 

information could be supplied as a table, and that is what is done in the example 

below, using the table in FBSosrbysize.gsh. The analysis is run in exactly the 

same way as is shown in Figure 4.6, except that the constraint is set to the table 

osrbysize, rather than the total 463935. 

 

 

Survey calibration 

================== 

 

Method:                                 linear 

Stratification factor:                  No_strata 

Number of strata:                       1 

Total number of data values used:       1776 

Input weights:                          Min = 4.597 Median = 28.87 Max = 146.0 

Adjusted weights:                       Min = 4.597 Median = 27.83 Max = 146.0 

Correlation input & adjusted wts:       0.992 

 

                   Target    Initial    % error      Final    % error 

    Constraint 

 osr Part-time      41743      54446      30.43      41743       0.00 

     osr Small      79512     105800      33.06      79512       0.00 

    osr Medium      85002     102521      20.61      85002       0.00 

     osr Large      82771      97384      17.65      82771       0.00 

osr Very large     174907     224134      28.14     174907       0.00 
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Notice how the table is able to specify five separate constraints, one for each 

level of farmsize. 

4.7 Practical 

In Chapter 3 we used the calibration weights in analysing the Farm Business 

Survey, treating them as if they were ordinary survey weights. When the 

correlation between the response variable is weak this will be a reasonable, and 

slightly conservative, assumption. However, when the correlation is stronger it can 

lead to a serious over-estimation of the variance. To illustrate this, reanalyse the 

June survey wheat data, (Section 2.2) using the previous wheat area, xa1 as a 

calibration variable. The file June_calibration.gwb contains the data, with 

the new holdings strata removed, since it lacks any data for xa1.  

First carry out a linear calibration, with A1_wheat as the data variable. Sheet 

totals contains a table with the totals for each stratum, which should be used for 

the constraints. Save the fitted values in a variable called whfit. Then analyse 

A1_wheat using the General Survey Analysis menu, using the calibration weights. 

Compare the standard error from this analysis with an analysis allowing for the 

impact of calibration by entering whfit in the Fitted Values box on the Save Options 

menu. 

 

4.8 Hot-deck imputation for missing values 

In the earlier sections of this chapter we saw how weights may be modified to 

allow for missing values in the data. An alternative solution when data are missing 

for just some of the survey variables (item non-response) is to use imputation to 

replace the missing value with a plausible non-missing value. This approach 

involves the need for different sets of weights for different variables and, if used 

sensibly, may also help to reduce bias when data are not missing at random. 

We shall first consider hot-deck imputation. The precise definition of this term 

varies but we shall use it in the most general sense, referring to the class of 

imputation methods where a missing value in one receptor unit is replaced by a 

value from a donor unit. To illustrate the technique, we will use column 

subsidy20mv from FBS_England_merged.gsh; this is a copy of column 

subsidy but with the first 20 values replaced, for illustrative purposes, with 

missing values. 
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The simplest way to 

impute for these values is 

simply to take the value 

from another farm totally at 

random. To do this select 

the sub-option Hot-deck 

Imputation from the Survey 

Analysis option on the Stats 

menu. The variable 

requiring imputation is 

clicked across to the box at 

the top left hand corner and 

a suitable name for the new 

variable, including the 

imputed values, is supplied 

in the right hand box 

(Figure 4.8). Clicking the 

Add to imputation list button 

moves the pair to the lower 

boxes, allowing further 

pairs to be added, if 

required. 

The results of the 

imputation can be seen 

most easily by putting the 

complete variable 

subsidy, the version with 

missing values and the 

imputed version in a new 

spreadsheet (Figure 4.9). 

Note how the new variable 

random has taken the 

values from subsidy20mv, 

but with the missing values 

replaced by values from 

other rows; for example, the 

imputed value in row 2 is 

taken from row 23. 

 

Figure 4.8 

 
Figure 4.9 
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Unsurprisingly, 

although imputation 

at random avoids 

any bias, it is not an 

effective approach, 

giving large 

differences between 

the real values and 

the imputed ones. 

The subsidies 

received differ 

between different 

types of farms, and 

so it is sensible to 

take account of this in the imputation process. Subsidy also tends to be correlated 

with the economic size of the farm, and the variable farmincome provides a 

measure of this. There are, however, some negative values, so a better approach is 

to calculate a new variable containing the absolute values. This can be achieved by 

selecting Column from the Calculate option on the Spread menu (Figure 4.10). The 

imputation can then be rerun, but with variables type and absfarmincome 

clicked across to the Distance variable box. The output is shown below. 

 

 

Hot-deck imputation 

=================== 

 

Imputation method: hotdeck       

Distance method: minimax 

Percent threshold for matches: 0.0% 

Threshold for matches: 0.0 relative to minimum 

No. of potential donors: 1756 

Rows imputed: 20 using 20 donors 

Distance range: Min = 0, Median = 0, Max = 0 

 

Histogram of distance 

--------------------- 

 

 

            - 0.0003  18 ****************** 

     0.0003 - 0.0006   1 * 

     0.0006 - 0.0009   0 

     0.0009 -          1 * 

 

Scale:  1 asterisk represents 1 unit. 

 

 

 

 

Figure 4.10 
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Variables used to calculate distances 

------------------------------------- 

 

 

Variable      Scaling factor 

type          * 

absfarmincome 3273039 

 

 

List of donors and recipients 

----------------------------- 

 

 

   Recipient       Donor    Distance 

           1         899   0.0000257 

           2         716   0.0000009 

           3        1398   0.0000128 

           4        1536   0.0000510 

           5          47   0.0000070 

           6         649   0.0003449 

           7        1085   0.0000226 

           8        1373   0.0000675 

           9         358   0.0000098 

          10         254   0.0000183 

          11        1212   0.0000113 

          12        1293   0.0000058 

          13         319   0.0011194 

          14        1632   0.0000205 

          15         525   0.0000419 

          16        1250   0.0000425 

          17         701   0.0001130 

          18        1299   0.0000458 

          19         265   0.0000354 

          20         863   0.0000180 

 

 

To interpret this output, we need to understand how Genstat determines the best 

match. Let us take row number 1 as an example. For each of the x-variables, a 

distance is calculated between row 1 (the receptor row) and all the potential donor 

rows, that is all rows with no missing values (unless otherwise specified). Since 

type is a factor the distance is calculated by an exact matching criterion, with the 

distance equalling zero if the types match or one if they do not. For variates such 

as absfarmincome the difference between each pair of rows is calculated. By 

default this is scaled by the observed range of the data; since the minimum value is 

23 and the maximum is 3273062 this is 3273039 as shown above. In the case of 

the selected match between row 1 and row 899, the absfarmincome values are 

14,699 and 14615 respectively, giving a distance of (14699-14615)/ 3273039 = 

0.0000257. Both these rows relate to dairy farms, so the distance with respect to 

type is 0. The default minimax method takes the maximum of the differences 

relating to each potential donor row (i.e. the maximum of 0.0000257 and 0 in the 
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example), and then selects the donor row with the lowest maximum value. The 

results from using this method are shown in the column nearest in Figure 4.9; a 

quick comparison suggests that it is better than the random allocation, particularly 

in terms of predicting zero subsidy claims. 

In this artificial example, the effectiveness of the imputation process can be 

judged by comparing the imputed values with the real ones. In real situations a 

similar comparison can be achieved by setting the options as shown in Figure 4.11. 

The Check box is ticked and the Rows to impute is set to 100 to indicate that 

imputation should be carried out for 100 rows selected at random from the full 

dataset. The correlation between the real values and the imputed ones can then be 

used to assess the effectiveness of the procedure. 

The resulting graph 

(Figure 4.12) shows that the 

imputation based on type 

and absfarmincome is 

reasonable; the correlation 

between the imputed and 

actual values is 0.413. 

subsidy20mv Predicted v actual
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Figure 4.12 

 
Figure 4.11 
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In the above imputation, the imputed value for each receptor row was taken 

from the best matching donor, with random selection used only to decide ties. In 

other situations, it may be preferred to select a match at random from donors 

within a certain distance of the receptor row. This can be achieved by setting the 

thresholds in the Options menu, either in absolute or percentage terms. One use of 

this approach is in multiple imputation, where the variability between different 

randomizations of the imputation process is used to gauge the impact on the final 

results. 

4.9 Model-based imputation for missing values 

Another method of imputation that is sometimes used is mean imputation, where a 

missing value is replaced by the mean of the appropriate category. Thus, in the 

FBS example of the previous section, we could replace missing subsidy values for 

dairy farms by the mean level of subsidy for those dairy farms with valid data. A 

natural extension of this is to use other linear regression models to predict missing 

values. For example, we might use a regression with subsidy as the dependent 

variable and absfarmincome as the independent (predictor) variable. Missing 

values in subsidy could then be produced by predicting the value that would be 

expected for the appropriate absfarmincome value. No special facilities exist for 

doing mean imputation in Genstat, but it can easily be achieved by fitting the 

regression model to the full dataset (including the missing values) and saving the 

fitted values (Linear Models sub-option of the Regression Analysis option on the Stats 

menu). 

There is, however, a disadvantage with mean imputation. Although it leads to 

good estimates of means and totals, it causes a downward bias in estimates of 

variances because the imputed values are homogeneous, without the random 

variation about the mean found in the real data. This leads to standard errors and 

confidence limits that give a misleading picture of the real precision of the 

estimates. To avoid this, it may be helpful to add random variation to the fitted 

values, thus ensuring that they mimic the real data in terms of variability. The hot-

deck imputation menu can be used to achieve this, adding a residual from a donor 

unit to the fitted value from the receptor (missing) unit to form the model based 

imputations. This is sometimes referred to as a semi-parametric imputation 

method, since it is midway between the non-parametric approach of the previous 

section and the fully parametric approach in which artificial residual values are 

selected from a Normal distribution of appropriate variance. 
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To illustrate the 

method, we will 

model subsidy20mv 

by fitting separate 

linear slopes against 

absfarmincome for 

each farm type. This 

can be done by Linear 

Models sub-option of 

the Regression Analysis 

option on the Stats 

menu as shown in 

Figure 4.13. It should 

be noted that examination of the residuals (e.g. by clicking Further Output and then 

Model Checking) provides strong evidence of non-Normality and so significance 

tests will not be valid. Nevertheless, the model can be used for imputation, 

provided that residuals are randomized within relatively homogeneous groups. The 

alternative is a model based on log-transformed subsidy; this would be more 

appropriate for most purposes, but may produce some implausibly large imputed 

values when back-transformed if the residuals show any departure from a 

homogeneous Normal distribution. To check the fitted model it is useful to 

produce a graph of the fitted relationship; this can be achieved by clicking Further 

Output and then Fitted Model. 

 
Figure 4.13 
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The resulting graph, 

after some editing to make 

the range of the axes more 

appropriate, is shown in 

Figure 4.14 (note that a few 

very large points lie beyond 

the maxima of the axes). 

The three lines with very 

shallow slopes correspond 

to pig, poultry and 

horticultural farms, which 

have received little subsidy 

in the past. 

 

 

 

 

 

 

 

 

To form each imputed 

value we need to read off 

the expected level of 

subsidy for the 

appropriate level of 

absfarmincome, using 

the line for the correct 

farm type. The vertical 

distance (residual) from 

another, real, data point is 

then added to this fitted 

value to form the imputed 

value. Figure 4.15 shows 

how this is done using the 

Hot-deck Imputation menu. 

Specifying type as the 

Fitted and observed relationship
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Figure 4.15 
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distance variable ensures that residuals are randomized within each type (i.e. a 

dairy farm receives a residual only from another dairy farm). This approach was 

chosen because the residual variance varies substantially between farm types; there 

would also be a case for using absfarmincome in addition, but that has not been 

done here in order to emphasise that the distance variables used in the distance 

matching need not be the same as those in the fitted model. 

There are other ways that regression can be used in the calculation of fitted 

values. One approach is to use a hot-deck approach, but with donors selected from 

units with similar fitted values. To do this, first fit the model as described above 

and then save the fitted values with a suitable name by clicking on the Save button 

on the Linear Regression menu. The imputation step is then exactly as described in 

Section 4.7 above, but with the fitted values specified as the distance variable. A 

variant on this is to use the estimated slopes from the regression as weights for the 

calculation of distances; for example, if the slope of x1 is 0.24 and two units have 

x1 values of 10 and 20, the distance is (20-10)×0.24=2.4. In the case of factors, the 

predicted value for each level is used as the basis for the distance calculation; thus, 

if group 1 has a predicted value of 150 and group 2 has a predicted value of 175, 

the distance between a receptor unit of group 1 and a donor of group 2 is 25. The 

maximum distance from the different variables is then taken for each pair of units 

as in the minimax method. This variant can be selected using the Regression option 

for Distance method in the Hot-deck Imputation Options menu. 
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5 Programming Genstat for surveys 

So far, all the analyses in this Guide have been completed using the menu system. 

This is an excellent way of learning Genstat and of exploring new datasets, but to 

make full use of Genstat it is helpful to master the program’s in-built programming 

language. Using programming has two big advantages for survey work: 

automating repetitive tasks, and maintaining a simple audit trail of the process. In 

this chapter you will learn about 

• saving and modifying the commands generated by the menu system 

• finding more information about commands 

• writing simple programs to analyse a list of questions 

• defining sub-populations using restrictions 

5.1 Modifying menu commands 

Writing a completely new program can be a daunting task and so it is generally 

easier to modify existing Genstat commands, maybe from a similar survey 

conducted in the past. However, when learning about new commands an 

alternative source of code to modify is provided by the Genstat menu system. 

Whenever the Run button is pressed on a Genstat menu, the commands generated 

to perform the analysis are copied to the Input window. To illustrate this, we will 

use the data on farm incomes from FBS_England_Merged.gsh which we first 

examined in Chapter 3. 

 
Figure 5.1 
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Start by opening the file FBS_England_Merged.gsh and then select General 

Survey Analysis from the Survey Analysis submenu on the Stats menu. Set the menu 

as shown in Figure 5.1. There is no need to alter the options menu at this stage. 

Now click the Run button and select the Input Log, either by clicking on it in the 

windows list at the left of the screen, or by selecting it from the Window menu. 

You should then see the command shown in Figure 5.2 (if necessary scroll 

down to the bottom of the window). Looking at the SVTABULATE command in 

more detail, it essentially consists of two parts; 

1. Within the square brackets, there is a list of options, in this case 
PRINT, CLASS(IFICATION), STRATUM, WEIGHTS, 

NINFLUENCE and FPCOMIT. The continuation symbol \ is used to 

split the command over two lines due to its length. 

2. After the square brackets there is a list of parameters, Y, LABELS, 

TOTALS and SETOTALS. 

In the commands generated by the menus, the names for options, parameters and 

the command itself are shown in capital letters and the settings are in lower case. 

This is a useful convention, but either lower or upper case can be used. However, 

variable names must be in the correct case. Names of commands, options and 

parameters can all be abbreviated (to not less than four characters for commands), 

but we will generally show them in full in this Guide. 

More detail about the syntax of commands in general can be found in the 

Guide to the Genstat Command Language, but for more information on 

SVTABULATE itself, search for it in the help facilities as shown in Figure 5.3. All 

possible options and parameters are shown, together with a brief description of 

what they do, and a list of possible settings where appropriate. If you scroll down 

further, you will see a more detailed description of the use of the procedure. 

 
Figure 5.2 
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To make changes to the command it is necessary to copy it to a new text 

window, which may be created by either clicking on the button on the left of the 

toolbar, or by selecting New from the File menu and choosing Text Window from the 

General tab. You can then edit it as required. In Figure 5.4 a new variable called 

farmincome_millions has been created; this makes the output easier to read by 

avoiding the excessive numbers of digits in the national total. The Y parameter of 

SVTABULATE has been changed to this new variable and the CLASSIFICATION 

 
Figure 5.4 

 
Figure 5.3 
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factor has been set to type. Once all the changes have been made, the modified 

command can be highlighted and results produced by selecting Submit Selection 

from the Run menu, or alternatively by using the button on the toolbar with a 

downward arrow alongside a sheet of paper. 

5.2 Practical 

Modify the command so that it also prints the stratum summaries and Wald test 

statistics. Save the test statistics in a structure called test stats. 

5.3 Analysing lists of variables 

In most surveys there are many variables to analyse and programming provides a 

way of automating this repetitive task. When doing this, however, it is important to 

examine the output of each variable separately, as there may be issues, such as the 

treatment of outliers or the appropriate sub-population to analyse, which will vary. 

The simplest way to analyse several variables is simply to list them at the Y 

parameter. For example, to analyse farmincome, otherincome, subsidy and 

netmargin, and to save the means per farm, we could type: 

 

 

SVTABULATE [PRINT=summary,means,influence; CLASS=type; STRATUM=stratum; WEIGHTS=weight;\ 

  NINFLUENCE=10; FPCOMIT=no]  Y=farmincome,otherincome,subsidy,netmargin; LABELS=farm;\ 

  MEANS=meanfi,meanoi,meansub,meannm; SEMEANS=sefi,seoi,sesub,senm 

 

 

This is a good moment to explain the difference between the options within the 

square brackets and the parameters that follow them. There are four Y variables 

and the parameters MEANS and SEMEANS also have four settings corresponding to 

them, so that the means for farmincome are stored in meanfi, etc. When the 

same setting is appropriate for each Y variable, as is the case for LABELS, it is 

sufficient to write LABELS=farm, since the values are recycled so it is treated as if 

it said LABELS=farm,farm,farm,farm. By contrast, options apply to all Y 

variables. Thus, the three settings of the PRINT option, apply to all the Y variables 

and so the summary, means and influence statistics are printed for each one. 

This listing approach works well with small numbers of variables, but is more 

problematic when a survey contains very large numbers of questions. The 

commands then become very long, with an increasing risk of failure due to typing 

errors. In particular, if an item is missed off the list for a parameter like MEANS, the 
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wrong means can end up in the wrong structure, which may be difficult to spot. 

This problem can be avoided by the use of FOR loops and pointers. 

FOR loops are best illustrated by a simple example. Suppose we just want to 

print the analyses for the variables farmincome, otherincome, subsidy and 

netmargin without saving the results. Using an implicit loop, as described above, 

we would write: 

 

 

SVTABULATE [PRINT=summary,means,influence; CLASS=type; STRATUM=stratum; WEIGHTS=weight;\ 

  NINFLUENCE=10; FPCOMIT=no]  Y=farmincome,otherincome,subsidy,netmargin; LABELS=farm 

 

 

Exactly the same output could be achieved using a FOR loop as follows: 

 

 

FOR d= farmincome,otherincome,subsidy,netmargin 

  SVTABULATE [PRINT=summary,means,influence; CLASS=type; STRATUM=stratum; WEIGHTS=weight;\ 

    NINFLUENCE=10; FPCOMIT=no]  Y=d; LABELS=farm 

ENDFOR 

 

 

The structure d is known as a dummy. The code between the FOR and ENDFOR 

commands is executed four times, with the dummy representing a different 

variable each time. Thus, the first time d represents farmincome, the second time 

otherincome, etc. More than one dummy can be set, as in the following example 

which saves the tables of means in suitably named structures using a dummy 

called mtab. 

 

 

FOR d= farmincome,otherincome,subsidy,netmargin; mtab= meanfi,meanoi,meansub,meannm 

  SVTABULATE [PRINT=summary,means,influence; CLASS=type; STRATUM=stratum; WEIGHTS=weight;\ 

    NINFLUENCE=10; FPCOMIT=no]  Y=d; LABELS=farm; MEANS=mtab 

ENDFOR 

 

5.4 Practical 

Modify the FOR loop above so that it produces tables of farmincome cross-

tabulated by a) sex of farmer, b) type of farm, and c) tenancy type. Note that 

this example cannot be achieved using an implicit loop because 

CLASSIFICATION is an option, not a parameter. 
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5.5 Pointers 

In itself, the use of a FOR loop does not give much advantage over the implicit 

loop approach of simply listing the variables to use as Y parameters. However, 

their usefulness can be increased by the use of pointers. Pointers are lists of 

variables. For example, the following command defines a pointer containing the 

four variables analysed above: 

 

 

POINTER [VALUES= farmincome,otherincome,subsidy,netmargin] ydata 

 

 

Suffixes can be used to refer to individual elements of this list, as for example, 

ydata[1], whilst two or more can be listed as ydata[1,3]. Most importantly, 

the whole list can be referred to by using empty brackets, ydata[]. Try the 

following commands which each produce descriptive statistics for one or more of 

the variables, as indicated by the comments in quotation marks: 

 

 

POINTER [VALUES= farmincome,otherincome,subsidy,netmargin] ydata 

DESCRIBE ydata[2]       "stats for otherincome" 

DESCRIBE ydata[2,3]     "stats for otherincome and subsidy" 

DESCRIBE ydata[1...3]   "stats for farmincome, otherincome and subsidy" 

DESCRIBE ydata[]        "stats for all four variables" 

 

 

Note how three dots (...) is used to continue a series of numbers. 

Pointers can be used most easily in FOR loops by using the NTIMES option, 

which specifies the number of times the loop is to be executed, and the INDEX 

option, which defines a scalar (single valued structure) taking the value 1 the first 

time, 2 the second, etc. Since our pointer contains four structures, we can write: 

 

 

POINTER [VALUES= farmincome,otherincome,subsidy,netmargin] ydata 

 

FOR [NTIMES=4;INDEX=i] 

  SVTABULATE [PRINT=summary,means,influence; CLASS=sex; STRATUM=stratum; WEIGHTS=weight;\ 

    NINFLUENCE=10; FPCOMIT=no]  Y=ydata[i]; LABELS=farm; MEANS=mean[i]; SEMEANS=sem[i] 

ENDFOR 

FSPREAD mean[],sem[] 

 

 



5  Programming Genstat for surveys 94 

This time, we have also used pointers to save both the means and their standard 

errors. These pointers are not defined in advance, so the variables do not have 

names (e.g. meanfi etc.), but we can still refer to them using the pointer-suffix 

notation. The final statement uses the FSPREADSHEET (form spreadsheet) 

command to display a spreadsheet containing the means and standard errors. 

Finally, the commands below demonstrate a couple of refinements of these 

commands. Instead of manually telling the program to execute the loop four times, 

we have calculated a scalar nvy containing the number of structures in the pointer 

and set the NTIMES option to equal this. As a result, if we alter the variables in the 

pointer, no further changes are needed elsewhere in the program, because it 

automatically determines the number of times to execute the commands within the 

FOR loop. 

 

 

POINTER [VALUES= farmincome,otherincome,subsidy,netmargin] ydata 

CALC nvy=NVALUES(ydata) 

 

SCALAR i;VALUE=1 

FOR [NTIMES=nvy;INDEX=i] 

  SVTABULATE [PRINT=summary,means,influence; CLASS=sex; STRATUM=stratum; WEIGHTS=weight;\ 

    NINFLUENCE=10; FPCOMIT=no]  Y=ydata[i]; LABELS=farm; MEANS=mean[i]; SEMEANS=sem[i] 

ENDFOR 

FSPREAD mean[],sem[] 

 

 

The other modification is to create the scalar i before the loop and give it the 

initial value 1. This has no impact on the results when running the whole block of 

commands but it does allow the commands to be tested before running them on all 

the variables. When running commands in a loop, a minor typing mistake can 

sometimes result in large numbers of warning messages and a large volume of text 

in the output window. This can be confusing, so it is easier to test the loop first 

using just the first variable, and then go on to run it properly only after any 

problems have been rectified. To do this, first run the commands up to, but not 

including, the FOR command (see the output window in Figure 5.5). Then 

highlight the commands within the FOR loop, as shown in input window 1 of 

Figure 5.5 and run them using Submit Selection from the Run menu. Examine the 

output, checking it has done what you wanted it to do before running the whole 

section of code.  
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5.6 When things go wrong 

Programming in any computer language is not easy. For example, a simple typing 

mistake can cause unexpected errors later on in a program. Even the best 

programmers make errors, and so understanding them and learning how to correct 

them is an important skill. Because there are so many types of errors it is difficult 

to cover all possibilities, but the list below provides some pointers that may help. 

1. One error or warning message in a program often triggers further ones later 

on even though the later commands may be completely correct, so try to 

find the original problem. In particular, in the output window do not focus 

on the warning message at the bottom of the window, without scrolling up 

to check for earlier messages. The output button on the fault message 

dialogue box will generally take you to the earliest message. Figure 5.6 

provides an example; clicking output will highlight the first fault which 

includes the message Identifier famincome has not yet been 

declared. In this case, the mistake was in the pointer statement where 

farmincome is misspelt as famincome, with the result that SVTABULATE 

cannot analyse this non-existent variable. 

 
Figure 5.5 
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2. As the above example shows, many problems relate to variables that 

cannot be found, perhaps because the identifier has been wrongly typed, or 

because the command creating them has not worked properly. When faced 

with a message like this, check that the variable exists. This can be done 

using the Data tab in the left hand pane of Genstat. Look carefully at the 

spelling and remember that variable names are case sensitive. 

Alternatively, the DUMP command provides information on particular 

variables, whilst LIST produces a list of all structures of a particular type; 

both can be run by typing them in an input window: 

 
Figure 5.6 
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1862  dump famincome,farmincome 

Dump 

==== 

 

Identifier      Type  Length   Values Missing  Ref.No. 

 

 famincome  *              *   Absent       *     -610 

farmincome  Variate     1776  Present       0     -749 

 1863  list variate 

 

  Structures of type VARIATE 

 

         identifier  number of values 

               farm              1776 

    uncalibrated_wt              1776 

             weight              1776 

                age              1776 

          netmargin              1776 

         farmincome              1776 

        otherincome              1776 

            subsidy              1776 

        subsidy20mv              1776 

      absfarmincome              1776 

 

 

3. When one fault occurs, this can often lead to subsequent problems, and so 

it is often sensible to clear all data and start again in order to remove the 

risk of unexpected errors. Selecting Clear All Data from the Data menu will 

achieve this, although an alternative is Restart Server from the Run menu; the 

latter also closes all open files and is therefore better when external files 

are being used.  

 

5.7 Reading from and writing to data files 

So far, we have opened the spreadsheet FBS_England_Merged.gsh manually, 

but this process can also be automated using the SPLOAD command: 

 

 

SPLOAD 'FBS_England_Merged.gsh';ISAVE=ipo 

 

 

Notice the ISAVE parameter; this creates a pointer listing all the columns in the 

spreadsheet, and is particularly useful when some rows need to be excluded in the 
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subsequent code, for example to produce estimates for a subpopulation. SPLOAD 

works only with Genstat spreadsheets, but the IMPORT command can import data 

from a wide variety of filetypes, including Excel spreadsheets and Genstat 

workbooks. The DBIMPORT command can read data from Access and other 

databases. 

As well as reading from a variety of file types, Genstat can produce results files 

in various formats. In the earlier examples, we used FSPREADSHEET to create 

spreadsheets within Genstat, and these can be saved in a variety of formats by 

selecting Save As from the File menu. Alternatively, the OUTFILE option of 

FSPREADSHEET allows Genstat spreadsheets to be created directly, whilst EXPORT 

can create files in a variety of formats, including Excel files and Genstat 

workbooks. The example below reads the data using SPLOAD and sends the results 

to an Excel file, without any need to use the Genstat menus. 

 

 

SPLOAD 'FBS_England_Merged.gsh';ISAVE=ipo 

 

POINTER [VALUES= farmincome,otherincome,subsidy,netmargin] ydata 

CALC nvy=NVALUES(ydata) 

 

SCALAR i;VALUE=1 

FOR [NTIMES=nvy;INDEX=i] 

  SVTABULATE [PRINT=summary,means,influence; CLASS=sex; STRATUM=stratum; WEIGHTS=weight;\ 

    NINFLUENCE=10; FPCOMIT=no]  Y=ydata[i]; LABELS=farm; MEANS=mean[i]; SEMEANS=sem[i] 

ENDFOR 

 

EXPORT [OUTFILE='FBS_Results.xls'; METHOD=add; SHEET='Tables by sex'] mean[],sem[] 

 

Data files can also be used to store a list of variables to be analysed. This 

approach can be particularly useful when there are very large number of variables 

and defining pointers in code may become cumbersome. It also allows staff not 

familiar with Genstat to set up the analysis using a spreadsheet package, without 

the need to understand the Genstat program.  

This is illustrated below. The Excel file FBS_England_Merged.xls contains 

a list of variables to tabulate by sex in sheet tables by sex. Using IMPORT 

these lists are created as text structures in Genstat but the FPOINTER command6 

allows them to be converted to pointers. This is illustrated below: 

 
6 FPOINTER is not a standard feature of Genstat but is part of the Biometris library, which may 

be installed from https://www.wur.nl/en/product/Biometris-GenStat-Procedure-Library-Edition-

21.htm 

https://www.wur.nl/en/product/Biometris-GenStat-Procedure-Library-Edition-21.htm
https://www.wur.nl/en/product/Biometris-GenStat-Procedure-Library-Edition-21.htm
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SPLOAD 'FBS_England_Merged.gsh';ISAVE=ipo 

 

IMPORT 'FBS_England_Merged.xls';sheet='by_sex' 

 

FPOINTER TEXT=tdata; POINTER=ydata 

 

"set up pointers for tables of means and standard errors" 

TXCONSTRUCT [TEXT=tmean] 'mean_',tdata 

FPOINTER TEXT=tmean; POINTER=mean 

TXCONSTRUCT [TEXT=tsem] 'se_',tdata 

FPOINTER TEXT=tsem; POINTER=sem 

 

CALC nvy=NVALUES(ydata) 

 

SCALAR i;VALUE=1 

FOR [NTIMES=nvy;INDEX=i] 

  SVTABULATE [PRINT=summary,means,influence; CLASS=sex; STRATUM=stratum; WEIGHTS=weight;\ 

    NINFLUENCE=10; FPCOMIT=no]  Y=ydata[i]; LABELS=farm; MEANS=mean[i]; SEMEANS=sem[i] 

ENDFOR 

 

EXPORT [OUTFILE='FBS_Results.xls'; METHOD=add; SHEET='Tables by sex'] mean[],sem[] 

 

 

Notice that we have also used FPOINTER to create the pointers mean and sem 

explicitly. This ensures that the columns in the Excel file have informative names 

(e.g. mean_farmincome rather than mean[1]). The TXCONSTRUCT command 

creates these names by joining text structures together.  

TXCONSTRUCT can also change the case of text structures and join texts to 

strings formed from numerical structures. This is illustrated in the example below. 

TXCONSTRUCT is used to put the list of variables into upper case, and this new text 

is then used to form the pointer mean. Thus, the table of means formed from 

farmincome is called FARMINCOME. 

The other complication in this example is that the sheet crosstabs specifies 

different tabulation factors for different variables. As a result, a separate 

spreadsheet needs to be created for each loop; all the tables cannot be put into the 

same spreadsheet because the CLASSIFICATION factors vary. Names have been 

created for these sheets by using TXCONSTRUCT to combine the loop number with 

the variable name, producing names such as Table 3 subsidy. Note how the $ 

symbol allows the use of individual rows of the structure tvariate; for example, 

if the scalar i has the value 3, then tvariate$[i] gives the value in the third 

row of the structure. 
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SPLOAD 'FBS_England_Merged.gsh';ISAVE=ipo 

 

IMPORT 'FBS_England_Merged.xls';sheet='crosstabs' 

 

FPOINTER TEXT=tvariate,tfactor;POINTER=pvariate,pfactor 

TXCONSTRUCT [TEXT=tmean;CASE=upper] tvariate 

FPOINTER tmean;mean 

 

CALC nvy=NVALUES(pvariate) 

 

SCALAR i;1 

FOR [NTIMES=nvy;INDEX=i] 

  SVTABULATE [PRINT=summary,means,influence; CLASS=pfactor[i]; STRATUM=stratum;\ 

    WEIGHTS=weight; NINFLUENCE=10; FPCOMIT=no]  Y=pvariate[i]; LABELS=farm;\ 

    MEANS=mean[i]; SEMEANS=sem[i] 

  TXCONSTRUCT [TEXT=tsheet;SEPARATOR=' '] 'Table',i,tvariate$[i];DECIMALS=0 

  EXPORT [OUTFILE='FBS_England_Crosstabs.xls';METHOD=add;SHEETNAME=#tsheet] mean[i],sem[i] 

ENDFOR 

 

 

5.8 Restrictions and subsets 

In the earlier chapters we have seen the importance of restrictions. These were 

used in Section 2.4 to identify outliers, and in Section 3.3 to define sub-

populations with SVTABULATE. In this section we shall see how to define these 

with commands, using the example of Section 3.3, in which we looked at income 

of male farmers tabulated by their educational background. 

The RESTRICT command is very simple; it has no options and only three 

parameters, of which only the first two are need here. The first parameter, 

VECTORS, lists the structures to be restricted (vectors is a collective name for one-

dimensional structures such as variates, texts and factors). Unlike the restrictions 

generated by the Restrict/Filter item on the Spread menu, where any restriction 

applies to all variables in a spreadsheet, restrictions defined in the command 

language can apply to any group of variables. In this case we could just restrict 

farmincome, but it is equally easy to restrict all the variables, by using the 

pointer formed by the ISAVE parameter of SPLOAD. The output shows this, and is 

identical to that of Section 3.3: 

 

 

  30  SPLOAD [PRINT=*] 'FBS_England_Merged.gsh';ISAVE=alldata 

  31 

  32  RESTRICT alldata[];CONDITION=sex.EQ.1 

  33 
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  34  SVTABULATE [PRINT=means; CLASS=education; STRATUM=stratum; WEIGHTS=weight] farmincome 

 

Means for subpopulation defined restriction in farmincome with 95% confidence limits 

------------------------------------------------------------------------------------ 

 

                      n   Sum wts      Mean      s.e.   %RSE/CV     Lower     Upper 

 05farmer.education 

  school only       526     19874     13807      1510     10.93     10846     16768 

         GCSE       230      8536     30082     11729     38.99      7078     53087 

     A levels       121      4123     20041      3081     15.37     13997     26084 

      college       511     16356     20886      1680      8.04     17590     24181 

       degree       222      6789     38041      5063     13.31     28110     47972 

     postgrad        41      1645      9757      4682     47.98       574     18940 

   apprentice        36      1323     15941      3389     21.26      9294     22587 

        other        36      1094     25402      8467     33.33      8796     42008 

         Mean      1723     59740     21403      1884      8.80     17708     25098 

 

Standard errors based on Taylor series approximations. Confidence limits use t-distribution 

with 1701 d.f. 

 

  35 

  36  RESTRICT alldata[] 

 

 

Let us now look at how the restriction is defined using the CONDITION parameter. 

CONDITION should be set to a logical expression that takes the value 1 for the 

rows to be included in the analysis and 0 for those to be excluded. The 

CONDITION may be formed by calculating a suitable variate, or by reading it from 

a file, but, most commonly, it is specified using Genstat’s relational operators. In 

this case the relational operator .EQ. is used to test whether the value of sex in 

each row is equal to 1, which is the value used for male. The most common simple 

relational operators are the following: 

equality   .EQ.  or  == 

non-equality   .NE.  or   <> 

less than   .LT.  or  < 

less than or equals  .LE.  or  <= 

greater than   .GT.  or  > 

greater than or equals .GE.  or  >= 

In this case, since sex is coded 1 for male, 2 for female, there are a variety of 

ways that we could have specified the restriction. Any of the following would have 

achieved the same restriction: 
RESTRICT alldata[]; CONDITION=sex.LE.1 

RESTRICT alldata[]; CONDITION=sex.LT.2 

RESTRICT alldata[]; CONDITION=sex.NE.2 

Restrictions can be combined by using the operators .AND. and .OR., so we 

could restrict to male farmers with degrees (coded as 4) by putting: 
RESTRICT alldata[]; CONDITION=sex.EQ.1.AND.education.EQ.4 
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Brackets can be used to avoid ambiguity. The first expression below gives male 

farmers in the degree or postgrad groups, whereas the second gives male farmers 

with degrees or farmers of either sex with postgraduate qualifications: 
RESTRICT alldata[];\ 

  CONDITION=sex.EQ.1.AND.(education.EQ.4.OR.education.EQ.5) 

RESTRICT alldata[];\ 

  CONDITION=(sex.EQ.1.AND.education.EQ.4).OR.education.EQ.5 

Whilst these operators are very simple and straightforward, the use of 

numerical levels for a factor with labels can cause confusion. It is not, for example, 

immediately apparent that degree is level 4 of education, because the levels 

are numbered from 0, not from 1. The following two operators allow either 

numerical or textual comparisons, and permit several values to be compared at 

once: 

inclusion  .IN. 

non-inclusion  .NI. 

For example, the following output shows the analysis for male farmers in the 

degree or postgrad groups: 

 

  56  SPLOAD [PRINT=*] 'FBS_England_Merged.gsh';ISAVE=alldata 

  57 

  58  TEXT [VALUES=degree,postgrad] ed2 

  59  RESTRICT alldata[];CONDITION=sex.IN.'male'.AND.education.in.ed2 

  60 

  61  SVTABULATE [PRINT=means; CLASS=education; STRATUM=stratum; WEIGHTS=weight] farmincome 

 

Means for subpopulation defined restriction in farmincome with 95% confidence limits 

------------------------------------------------------------------------------------ 

 

                      n   Sum wts      Mean      s.e.   %RSE/CV     Lower     Upper 

 05farmer.education 

  school only         0         0         *         *         *         *         * 

         GCSE         0         0         *         *         *         *         * 

     A levels         0         0         *         *         *         *         * 

      college         0         0         *         *         *         *         * 

       degree       222      6789     38041      5063     13.31     28110     47972 

     postgrad        41      1645      9757      4682     47.98       574     18940 

   apprentice         0         0         *         *         *         *         * 

        other         0         0         *         *         *         *         * 

         Mean       263      8435     32524      4203     12.92     24281     40767 

 

Standard errors based on Taylor series approximations. Confidence limits use t-distribution 

with 1701 d.f. 

 

  62 

  63  RESTRICT alldata[] 

 

 



5  Programming Genstat for surveys 103 

Notice that it is good practice to remove restrictions when they are no longer 

required, by giving a RESTRICT command with no CONDITION set. Otherwise 

unexpected results can arise when multiple restrictions are applied to the same 

variables. 

In the above examples we want to confine the analysis temporarily to a subset 

of the data. Sometimes, however, there is a need to exclude part of the dataset 

permanently, and this may be achieved by using the SUBSET command. The 

syntax is slightly different to RESTRICT in that CONDITION is an option not a 

parameter. The following example shows how farms with negative incomes can be 

excluded from the dataset. 

 

 

  66  DESCRIBE [SELECTION=nobs,mean,min,max] farmincome 

 

 

Summary statistics for farmincome 

================================= 

 

      Number of observations = 1776 

                        Mean = 30540 

                     Minimum = -448626 

                     Maximum = 3273062 

 

  67  SUBSET [farmincome.GE.0] alldata[] 

  68  DESCRIBE [SELECTION=nobs,mean,min,max] farmincome 

 

 

Summary statistics for farmincome 

================================= 

 

      Number of observations = 1413 

                        Mean = 43785 

                     Minimum = 23 

                     Maximum = 3273062 

 

 

Whilst SUBSET is frequently useful in writing programs, it should not 

normally be used with survey commands such as SVTABULATE, except for 

removing unsampled units or units not forming part of the population. This is 

because calculation of the correct standard errors for a sub-population uses 

information from the whole sample, not just the units in the groups of interest. 

Instead RESTRICT should be used to define the sub-population, as described 

above. 
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6 Survey design and sampling 

So far, we have considered analysis with little, if any, consideration of the design 

of the survey. This reflects the reality that many statisticians, particularly those at 

the start of their careers, analyse surveys which they have not themselves 

designed. In this chapter we will partially redress this balance. However, in doing 

so we shall concentrate on practical issues; we do not have the space here to 

consider the full theory of survey design. 

In this chapter you will therefore learn about 

• selecting random samples 

• stratified random samples 

• sample selection for cluster and two-stage designs 

6.1 Selecting random samples 

To illustrate the principles of 

sample selection, we shall 

consider how to select a simple 

random sample from the June 

agricultural survey population 

in Junemod.gsh using the 

Survey sampling menu. The 

appropriate settings are shown 

in Figure 6.1 to take a 10% 

sample of the farms. The 

proportion of farms to sample 

is put in the Numbers/proportion 

to sample box; Genstat 

determines automatically 

whether numbers or proportions have been given, treating them as proportions if 

the highest value is less than 1. The Units in population box is set to the total number 

of farms in the population (19156). 

In order to save details of the units selected, it is necessary to click on the Store 

button. Sampled units box can be used to identify the selected units, and in Figure 

6.2 this has been set to a variate called sampno. If the Output data format is set to 

whole population, then this variable will contain a 1 where a unit is sampled and a 0 

where it is not selected. Alternatively, if the Output data format is set to sampled units 

 
Figure 6.1 
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only, then it contains the row numbers 

of the selected units. In this dataset, 

farms are identified by a holding 

number stored in the variate holding, 

and so it is useful to have a list of the 

selected numbers. This can be achieved 

by placing the cursor in the Existing 

variable box and then double clicking 

holding in the Available data list to 

move it across (Figure 6.2). The name 

sampled_holding, for the list of 

sampled units, is then entered in the 

New variable name box before clicking 

the Add to saved variables button. 

Additional variables can be added to 

the Currently saved variables list if 

required, thus building a new dataset 

containing details of the selected units. 

 

 

 

 

6.2 Selecting stratified random samples. 

Let us now see how the above ideas can be extended to stratified random samples. 

Where, as in the June Survey example, a complete population dataset exists 

containing the stratification factor, one approach is to supply a list of numbers in 

the Number/proportions to sample box after ticking the Factor for strata box from the 

survey sampling menu. This is quick but carries more risk of error for designs with 

many strata and so an alternative is to supply the numbers in a table.  

A new table can be created by selecting Create from the New submenu of the 

Spread menu. After clicking the Table icon, the Create from existing factors box 

should be checked (Figure 6.3), and the factor strata selected from the list. The 

required numbers can then be entered in the table, as is shown on the right of 

Figure 6.3.  

 

 

 
Figure 6.2 
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Once this has been completed, the table can be used as input for the Survey 

sampling menu, as is shown in Figure 6.4. Note that the Units in population box can 

be left empty, since this information can be deduced from the factor strata 

which classifies the nsample table. The right hand side of Figure 6.4 shows the 

settings of the Survey Sampling Store Options menu. Once again, the Output data 

format has been set to Sampled units only, but this time a number of variables are 

shown in the Currently saved variables list in order to create the spreadsheet shown in 

Figure 6.5; this could be used for analysis once the response data is added. Note 

that the stratification factor for analysis is obtained by including strata in this 

list. Alternatively, it could be obtained by checking the Stratum factor box and 

supplying a name for the new factor in the associated box, but the approach used 

ensures that it appears in the same spreadsheet as the other new variables. 

  
Figure 6.4 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

Figure 6.3 
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By default, the following summary output is produced: 

Survey sampling results 

======================= 

 

 

               Population      Sample    p sample 

       strata 

          new        2613         100       0.038 

        small        5851         200       0.034 

       medium        5479         500       0.091 

        large        3074         500       0.163 

   very large        2139         500       0.234 

        Total       19156        1800       0.094 

 

The above method assumes that there is an existing Genstat dataset defining 

each unit in the population. Sometimes this is not the case, and instead we want to 

create a new dataset as part of the sampling process. Figure 6.6 shows how the 

 
Figure 6.5 
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data should be organised in a spreadsheet (in 

this case a Genstat spreadsheet, but an Excel 

file could be used and imported using the 

Excel wizard). 

Before this information can be used in the 

Survey sampling menu, Strata needs to be 

converted into a factor, for example by right 

mouse clicking on it and selecting Convert to 

factor. The settings for the Survey sampling 

menu are shown in Figure 6.7. Since, unlike in 

Figure 6.4, the structures nsamp and npop are variates rather than tables, the 

Factor for strata box needs to be ticked and the factor name supplied in the box. In 

this example, the Output data format is set to Whole population in order to create a new 

dataset describing all units in the population, with variable SAMPLED having a 

value 1 where a unit is sampled (left hand side of Figure 6.8). Alternatively, the 

Output data format could be set to Sampled units only, in which case SAMPLED lists the 

numbers of the sampled units. With the latter format it is usually appropriate to set 

the Numbered within radio button to Strata; this will be useful, for example, where a 

numbered list of units is available for each of the strata. The format is shown on 

the right hand side of Figure 6.8. 

 

  
Figure 6.6 

  
Figure 6.7 
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6.3 Cluster and multi-stage sampling 

Sometimes, rather than sampling individual units at random, we wish to sample 

groups of units together; this is known as a cluster sample. For example, in the 

June Survey dataset, the holdings are grouped into parishes. Let us suppose that we 

wish to sample 10% of the parishes, collecting data from all holdings in the 

selected parishes. For simplicity, we will not stratify the sample, but the same 

approach can be extended to stratified samples, provided that the cluster units are 

nested within the strata. 

Figure 6.9 shows the settings to achieve this; they are identical to those in 

Figure 6.1 except that parish is entered in the Sampling units box. The output 

produced is shown below; the population size is now shown in terms of the 

number of parishes. 

 
Figure 6.8 
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Survey sampling results 

======================= 

 

 

               Population      Sample    p sample 

  psu_stratum 

 Unstratified        2701         270       0.100 

        Total        2701         270       0.100 

 

This is all that is required for a cluster sample in which data is collected from 

all units within the selected clusters. However, sometimes a second stage of 

sampling is required to select a subset of units from the clusters selected by the 

first stage; this is a multi-stage sample. For this exercise we will assume that it is 

required to sample 40% of holdings in those parishes selected in the first stage.  

To achieve this with the example, the parishes are treated as if they are strata 

and a table is created containing the sampling proportions or numbers for each 

parish. (If the sampling fraction is the same for all parishes, unstratified sampling 

could be used, but we will not use this method since it cannot be applied to more 

complex situations). The table can easily be created using Summary tables from the 

Survey analysis menu (Figure 6.10), provided that the Whole population option was 

selected in the first stage of sampling, as shown in Figure 6.9. The table of means 

  
Figure 6.9 
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produced in table tstage1 will then contain the value one for holdings sampled 

in the first stage and a zero for those not sampled. Selecting Calculate, then Column, 

from the Spread menu, enables us to multiply this table by 0.4, as shown in Figure 

6.11, to produce the required table of sampling proportions for the second stage. 

 
Figure 6.10 

 
Figure 6.11 
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An undesirable property of the sampling proportions in table psample2 is that, 

because some parishes contain just a single holding, the 40% sample will result in 

no holdings being sampled in these parishes. This problem can be solved by 

calculating the numbers to sample from the proportion by multiplying the 

sampling proportion by the number of holdings using the CEILING function to 

round up to the nearest whole number, as is shown in Figure 6.12. 

Finally Figure 6.13 shows the settings to obtain the final sample, and the 

extract of the output corresponding to the parishes shown in the previous figure is 

shown below. 

 
Figure 6.13 

 
Figure 6.12 
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Survey sampling results 

======================= 

 

               Population      Sample    p sample 

       parish 

       110010           6           0       0.000 

       110017           1           0       0.000 

       110020          10           0       0.000 

       110030           3           0       0.000 

       110050           6           0       0.000 

       110060           7           3       0.429 

       110070           4           0       0.000 

       110080           6           0       0.000 

       110090          12           5       0.417 

       110100           5           0       0.000 

       110110           4           0       0.000 

       110120          14           0       0.000 

       110130           7           3       0.429 

       110140           9           4       0.444 

       110150           4           0       0.000 

       110160          10           0       0.000 

       110170          12           0       0.000 

       110180           3           0       0.000 

       110190           4           2       0.500 

       110200           4           0       0.000 

       110210           6           2       0.333 

       110220           4           0       0.000 

       110230           4           0       0.000 

       110240           4           0       0.000 

       110250           1           1       1.000 

       110270           3           0       0.000 

       110280           5           2       0.400 

       110290           6           2       0.333 
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7 Regression models for survey data 

As well as producing tables of means and totals, the analysis of surveys will 

frequently involve fitting models to explore relationships between variables. Thus, 

in a health survey, we may want to explore the characteristics of people suffering 

from a particular disease, or in a wildlife survey we might relate the presence of a 

particular species to the characteristics of the surveyed sites. 

In this chapter you will learn about 

• whether a weighted model is appropriate 

• how to fit weighted linear regression models with appropriate variance 

estimates 

• using bootstrapping to obtain standard errors for more complex models 

• the relationship with the methods of Chapter 3 

 

7.1 To weight or not to weight 

Survey weights are designed to produce unbiased estimates of population 

parameters, so it might seem logical to use them in all analyses. However, bias is 

not the only consideration when determining an appropriate analysis. An unbiased 

estimator with very wide confidence limits is, in practice, less useful than a more 

precise, but slightly biased one. When survey weights within a stratum are highly 

variable, estimates formed using those weights will be imprecise, and so there may 

be a case for using an unweighted estimate instead, provided there are grounds for 

believing the bias to be small. 

The above argument applies to the estimation of any statistic but, in the case of 

regression, there are also other considerations. Regression may be used in a 

‘descriptive’7 way, in which the objective is to produce an unbiased estimate of the 

relationship between two variables. Weights would generally be used for this type 

of analysis. However, regression is often used in a more ‘analytical’ way to 

explore relationships in the survey dataset. In this situation it is often important not 

to miss important relationships, and it may be sensible to accept a limited amount 

of bias in order to achieve this. 

 It is also important to consider the population to which inferences from the 

regression analysis apply. When using a survey to estimate a mean or a total it is 

 
7 See Chapter 4 of Analysis of Health Surveys by E.L. Korn and B.I. Graubard (1999, Wiley). 
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generally clear that we want to produce an estimate that is applicable to the 

particular population from which we sampled. For example, in the case of the 

analysis of Section 3.2 it is clear that the estimated average income applies to 

commercial farms in England in the year of the survey, and we would not usually 

expect to extrapolate this to farms in a different year or a different country. 

This is also sometimes the case in regression analysis of survey data, 

particularly when we are using regression in a descriptive setting, maybe to 

improve our estimates of means or totals. Here the confidence limits of a 

regression slope represent the uncertainty in the estimate of the relationship in the 

population. Thus, if we had the full data from every unit in the population for both 

the dependent and independent variables in the regression, we would know the true 

slope and no confidence limits would be needed. 

However, when regression is used in an analytical context, the relationships 

may have wider applicability. For example, we might model the relationship 

between farm income and a variety of characteristics of the farms, in order to 

suggest how farmers could improve their incomes. These results might be used to 

influence government policy to the farming sector in future years, on the ground 

that the underlying relationships would continue to hold, even if the incomes 

themselves changed, for example as a result of changes in commodity prices. In 

this analysis we are interested in a wider ‘super-population’ of farms, rather than 

just the population existing in the year of the survey, and it may therefore be more 

appropriate to apply conventional regression analyses for an infinite population, 

rather than sample survey estimators. 

If it is decided to adopt a standard, unweighted regression analysis, it is still 

important to consider the survey design when deciding what terms to include in the 

model. We will discuss this later in the chapter. 

7.2 Linear regression for surveys 

The approach to survey regression implemented in Genstat is based on the same 

Taylor series approximation as in the methods of Chapter 3. The analysis produces 

identical parameter estimates to an ordinary regression with the appropriate 

weighting. However, the variances are calculated by an approximation that allows 

for the lack of independence that results from the structure of the survey. Also, 

unlike ordinary generalized linear models, the residual variance is estimated 

separately in each stratum; this can be important when the magnitude of the 

response variable differs substantially between strata, as is often the case in 

business surveys. 
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To illustrate the weighted 

analysis of survey data, we will 

use another subset of the Farm 

Business Survey data and 

investigate how the amount of 

Government support received 

by farms (subsidy) is related 

to the area of the farm 

(farmarea). The data are in 

FBS_Regression.gsh.  

Before fitting any regression 

model, it is sensible to plot the 

relationship between the 

variables. This is shown in 

Figure 7.1 which was drawn by 

selecting 2-D Scatter Plot from 

the Graphics menu. The most 

striking feature is that both variables show a skew distribution, with a few 

relatively large values, but most points in the bottom left hand corner of the plot. 

With an ordinary regression analysis some form of transformation, probably using 

logs, would be needed to meet the assumption of a Normal distribution of errors. 

For survey regression, as with the estimation of survey means and totals, we are 

not relying on Normality, and so a transformation is not absolutely necessary. 

However, unless there is a strong reason for wanting to work on the natural scale, 

it may be preferable to transform the data anyway, because otherwise the outlying 

high values will have high leverage and may distort the relationship.  

  
 

  

 

Figure 7.2 
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Figure 7.1 
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Figure 7.2 shows the settings of the 2-D Scatter Plot menu to plot the variables 

on the log scale. Note that because subsidy contains some zero points, the y 

variable is set to subsidy + 1 so that these can be displayed (if this is not done, 

Genstat will not display the y-axis on the log scale). The second step is to set the 

Transform axis box to Log(base 10) for both the Y Axis and X Axis tabs.  The resulting 

graph is shown on the right of Figure 7.2. It is now clear that there is a strong 

approximately linear relationship, but there is a row of points along the bottom 

with zero subsidy (i.e. a value of 1 for subsidy + 1). The graph also shows that 

almost all of the points in this row represent pig, poultry or horticultural farms; 

these are sectors that received no subsidies in the past and have much lower rates 

of uptake of the current support payments. It therefore makes sense to exclude 

these farm types from the analysis 

by selecting Restrict/Filter from the 

Spread menu and then choosing To 

Groups (factor levels). 

Figure 7.3 shows the settings of 

the Generalized Linear Models for 

Survey Data menu to fit the 

regression model. Note the use of 

mergedstratum to avoid the 

problems caused where there is a 

single valid observation in some 

strata. The output is shown below. 

 

 

Regression analysis 

=================== 

 

 Response variate: logsubsidy 

   Weight variate: scaledwts 

     Fitted terms: Constant, logfarmarea 

 

   Supplied weights:  weight 

             Strata:  mergedstratum 

  Observations used:  1449 

           PSU used:  1776 

    Population size:  61653 

  Obs in sub-population:  1449 

  Subpopulation size:  52988 

          CI method:  tdistribution (95% limits) 

 

Estimates of parameters with 95% confidence limits 

-------------------------------------------------- 

 

                 Estimate        s.e.       Lower       Upper 

     Constant       2.289       0.072       2.148       2.431 

Figure 7.3 
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  logfarmarea       0.961       0.032       0.898       1.024 

 

Standard errors are based on Taylor series approximations. Confidence limits use t-

distribution with 1728 d.f. 

Based on subpopulation defined by restriction in logsubsidy 

 

Note that the regression slope is close to 1.0. As increasing the log value by 1.0 

is equivalent to a ten-fold increase on the natural scale (remember we used logs to 

the base 10), this implies that a tenfold increase in farmarea results, on average, 

in a roughly tenfold increase in 

subsidy.  

Interpreting a list of 

regression coefficients can be 

difficult, particularly in more 

complex models containing 

interaction terms. In these 

situations, it is often helpful to 

examine tables of predictions 

from the model. Figure 7.4 

shows how this may be achieved 

by clicking on the Specify 

Prediction values button on the 

Options menu. The variable 

logfarmarea is clicked across 

into the Explanatory Variate box. 

By default, values are predicted at the mean value, but by highlighting the row and 

clicking the Change Values box a list of values can be specified as shown. The 

output is shown below. 

 

Predictions from regression with 95% confidence limits 

------------------------------------------------------ 

 

Predictions for logfarmarea 

 

               Prediction        s.e.       Lower       Upper 

  logfarmarea 

          1.0       3.250     0.04065       3.170       3.330 

          1.5       3.731     0.02554       3.681       3.781 

          2.0       4.211     0.01308       4.185       4.237 

          2.5       4.691     0.01444       4.663       4.720 

          3.0       5.172     0.02766       5.118       5.226 

 

 

Figure 7.4 
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* Note: Standard errors are based on Taylor series approximations. Confidence 

limits use t-distribution with 1775 d.f. 

In Figure 7.4 we have also saved the predictions in structure pr. Because 

predictions may be formed for more than one model term, pr is a pointer with one 

element for each requested term. In this simple case, where there is just one 

explanatory variate for which predictions are needed, pr[1] is a table containing 

the predictions. 

 

7.3 Generalized linear models for surveys 

In the above example, we used a log-transformation to achieve approximate 

Normality of the response variable. In other situations, we may prefer to fit a 

generalized linear model (GLM) with error distribution other than the Normal 

distribution or with a different link function. See Chapter 3 of A Guide to 

Regression, Nonlinear and Generalized Linear Models in Genstat for more details 

of the range of models available. 

To illustrate the use of GLMs we shall investigate the characteristics of those 

pig, poultry and horticultural farms that did not claim any support payments and 

hence appeared in the row of points at the bottom of Figure 7.2. The first step is to 

construct a new variable taking the value 1 for these farms and 0 for the farms 

where subsidy is greater than zero. This can be done by selecting the Spread 

menu and then Column from the Calculate sub-menu (Figure 7.5). The resulting 

variable is then analysed using a GLM with a binomial distribution, with the 

number of binomial trials set to 1 (Figure 7.6). Initially we will try using the log of 

the farmed area and the farm type as explanatory variables. We will restrict the 

analysis to the three types of farms that we are interested in, and we will use 

variable type_pph, which has 

levels and labels only for the three 

types, rather than type, to avoid 

warning messages relating to the 

farm types not of interest. Taylor 

series approximations are not 

available for non-Normal models 

in Genstat at present, so instead 

we select the bootstrap variance 

method with two hundred 

bootstrap samples; this is 

sufficient to produce reasonably 

 
Figure 7.5 
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robust preliminary results without taking too long, although it is best to use several 

thousand for the final analysis if bootstrap confidence limits and Wald test 

statistics are required. The output is shown below. 

 

Regression analysis 

=================== 

 

 Response variate: zerosubs 

  Binomial totals: 1 

     Distribution: Binomial 

    Link function: Logit 

   Weight variate: scaledwts 

     Fitted terms: Constant + logfarmarea + type_pph 

 

   Supplied weights:  weight 

             Strata:  mergedstratum 

  Observations used:  327 

           PSU used:  1776 

    Population size:  61653 

  Obs in sub-population:  327 

  Subpopulation size:  8665 

  Bootstrap samples:  200 

   Bootstrap method:  simple 

          CI method:  tdistribution (95% limits) 

 

Estimates of parameters with 95% confidence limits 

-------------------------------------------------- 

                          Estimate        s.e.       Lower       Upper 

              Constant        3.69        0.57        2.57        4.81 

           logfarmarea       -3.47        0.49       -4.42       -2.51 

      type_pph Poultry        0.52        0.50       -0.46        1.49 

 type_pph Horticulture        0.86        0.44       -0.01        1.73 

 

 
Figure 7.6 
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Standard errors based on 200 bootstrap samples. Confidence limits use t-

distribution with 1728 d.f. 

Based on subpopulation defined by restriction in zerosubs 

 

Wald Tests 

---------- 

 

       Term      Wald         F       df1       df2         P 

logfarmarea     50.51     50.51         1      1728    <0.001 

   type_pph      3.82      1.91         2      1727     0.149 

 

Wald tests for the significance of the fitted terms are also shown; the test 

statistics are calculated using a variance-covariance matrix derived from the 

bootstrap parameter estimates. These statistics are particularly useful for factors 

with more than two levels, when the statistical significance of differences cannot 

easily be deduced by examining the estimates and their standard errors. In this case 

logfarmarea is very highly significantly different from zero, whereas 

type_pph is well above the 

conventional 0.05 level of 

significance. 

Once again, it is useful to 

form predicted values to give a 

better impression of the results. 

The settings for this are shown in 

Figure 7.7. By default, predictions 

are formed for all combinations of 

the variables, which in this case 

would mean a table with rows 

representing the different values 

of logfarmarea and the 

columns different levels of 

type_pph. To produce separate 

tables for logfarmarea and type_pph these terms are listed in the Specified 

terms only box. 

 

Figure 7.7 
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Predictions from regression with 95% confidence limits 

------------------------------------------------------ 

 

Predictions for logfarmarea 

 

               Prediction        s.e.       Lower       Upper 

  logfarmarea 

          0.5      0.9302     0.02475      0.8816      0.9787 

          1.0      0.7072     0.05088      0.6074      0.8070 

          1.5      0.3064     0.05220      0.2040      0.4088 

          2.0      0.0734     0.02597      0.0225      0.1244 

 

 

Predictions for type_pph 

 

               Prediction        s.e.       Lower       Upper 

     type_pph 

         Pigs      0.6523     0.07824      0.4989      0.8058 

      Poultry      0.7586     0.07361      0.6142      0.9030 

 Horticulture      0.8156     0.06455      0.6890      0.9422 

 

* Note: Standard errors based on 200 bootstrap samples. Confidence limits use t-

distribution with 1728 d.f. 

 

Looking at the output above, it 

can be seen that around 71% of 

farms with 10ha (i.e. 

logfarmarea = 1) do not claim 

support payments, but this falls to 

only 7% of those with 100ha 

(logfarmarea = 2). By contrast, 

as would be expected from the 

non-significant Wald test statistic, 

there is much less difference 

between the predictions for the 

different levels of type_pph, with 

an estimated 65% of pig farms, 

76% of poultry farms and 82% of 

horticultural farms not claiming 

payments. The confidence limits 

shown are based on the t-

distribution and the bootstrap standard error of each predicted value; this is the 

default for less than 400 bootstrap samples. With larger numbers of bootstrap 

samples, confidence limits are derived from the appropriate percentiles of the 

distribution of bootstrapped predicted values.  
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Figure 7.8 
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7.4 Fitting unweighted models 

As discussed in Section 7.1, it may be useful to consider an unweighted model 

fitted by standard regression approaches, particularly when the weights are highly 

divergent. Figure 7.8 contains a boxplot of weights for the three farm types used in 

fitting the logistic regression model of Section 7.3, showing that the weights are 

particularly variable for horticultural farms. It is therefore sensible to compare the 

results above with those from an unweighted model. 

The output below shows predictions for type_pph for a logistic regression 

regression model of zerosubs fitting explanatory variables for logfarmarea 

and type_pph (Figure 7.9). 

 

Predictions from regression model 

--------------------------------- 

 

These predictions are estimated mean proportions, formed on the scale of the 

response variable, corresponding to one binomial trial. 

 

The predictions have been formed only for those combinations of factor levels for 

which means can be estimated without involving aliased parameters. 

 

The predictions are based on fixed values of some variates: 

        Variate   Fixed value   Source of value 

    logfarmarea        0.9886   Mean of variate 

 

 
Figure 7.9 



7  Regression models for survey data 124 

The standard errors are appropriate for interpretation of the predictions as 

summaries of the data rather than as forecasts of new observations. 

 

Response variate: zerosubs 

 

               Prediction        s.e. 

     type_pph 

         Pigs      0.5335     0.08424 

      Poultry      0.6905     0.07337 

 Horticulture      0.8504     0.03120 

 

* MESSAGE: s.e's, variances and lsd's are approximate, since the model is not 

linear. 

 

* MESSAGE: s.e's are based on dispersion parameter with value 1 

 

Compared to the equivalent weighted results, there are some big differences in 

the parameter estimates, especially for pig farms. A deviance test for adding 

type_pph to the model is highly significant (χ2 = 7.53 with 2 d.f., P<0.001). In 

addition, the standard error for horticulture farms is much lower at 0.031 compared 

to 0.072 in the weighted analysis; the lower standard error for horticultural farms 

in the conventional analysis reflects their larger sample size, whereas in the 

weighted survey analysis this is counteracted by the variable weights for this farm 

type. Such differences are not unusual when sample sizes are relatively small, but 

do indicate that results should be treated with caution.  

When fitting unweighted regression models to survey data it is good practice to 

include variables relating to the survey design in the model, and to check for 

interactions between these and the explanatory variables of interest. However, this 

can be problematic when the design variables themselves influence the response 

variable. In the current example, the strata are based on a combination of farm type 

(type) and economic size (farmsize); thus, the mergedstratum factor cannot 

be included in the model because it is aliased with type_pph. The factor 

farmsize can be included in the model, although it might itself have an impact 

on whether a farm claims subsidy and it is also correlated with the physical size of 

the farm. If farmsize is fitted, type_pph ceases to be significant and this may 

indicate that the discrepancy between the weighted and unweighted results is 

related to the differences in economic size between the groups of farms. 
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7.5 Relationship with cross-tabulations 

When the explanatory variables in a weighted survey regression with Normal 

errors are all factors, prediction will produce the same results as the cross-

tabulation methods of Chapter 3. This is illustrated in the practical of Section 7.6 

below. 

The equivalence between the two approaches can be useful when fitting more 

complex models. For example, if we wish to estimate farmincome by for all 

combinations of type and tenancy this could be done either using either the 

General Survey Analysis menu or Generalized Linear Models for Survey Data menu fitting 

the model type*tenancy. However, some cells are based on low numbers of 

observations and may be unreliable. An alternative model which avoids this 

problem involves fitting the main effects only by using type+tenancy in the 

Model to be Fitted box of the Generalized Linear Models for Survey Data menu. 

 

7.6 Practical 

To illustrate the equivalence of the two approaches, use the dataset in 

FBS_Regression.gsh to predict mean farmincome levels by farm type using 

the Generalized Linear Models for Survey Data menu with mergedstratum as the 

stratification factor. Then repeat the analysis using the General Survey Analysis 

menu. 
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Appendix 1: Genstat code for all examples 

This appendix shows the code required to generate the analyses shown or 

described in the text. The code is simplified as much as possible, for example by 

omitting options set by the menus despite using the default values, but names of 

commands, parameters and options are not generally abbreviated. 

 

1 Basic principles 

1.1-1.3 Getting the data into Genstat 

Note use of backslash (or double forward slash) in pathnames. 

 

 

IMPORT 'C:/Progra~1/Gen22Ed/Data/Province.xls';\ 

  SHEET='simple RS full pop'; ISAVE=ipo 

 

SVSTRATIFIED [PRINT=summary,totals,means] unemployment; LABELS=municipality 

 

"Section 1.2 - repeat above command saving TOTALS" 

SVSTRATIFIED [PRINT=summary,totals,means] unemployment; LABELS=municipality; \ 

  TOTALS=tot_unemploy; SETOTALS=se_tot 

FSPREADSHEET tot_unemploy,se_tot 

 

" Section 1.3 - again repeat, this time printing influence stats  

  and plotting graph " 

SVSTRATIFIED [PRINT=summary,totals,means,influence; PLOT=single] unemployment; \ 

  LABELS=municipality 

 

 

1.4 Practical 

Two alternatives are shown below to construct unemployment2; one requires 

knowledge of the row number to be replaced by a missing value, whereas the other 

works with the name of the municipality. The latter uses the MVINSERT function; 

the first argument is the original version of the data, the second is a logical 

expression indicating the rows to replace with missing values. 

 

 

IMPORT 'C:/Progra~1/Gen22Ed/Data/Province.xls'; \ 

  SHEET='simple RS full pop'; ISAVE=ipo 

 

SVSTRATIFIED [PRINT=summary,totals,means] unemployment; TOTALS=tot_unemploy 

 

DUPLICATE unemployment;NEWSTRUCTURE=unemployment2 

CALC unemployment2$[1]=CONSTANTS('missing') 

" alternatively the following does the same as the above, 

  but without the need to know the row to replace with a missing value" 
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CALC unemployment2=MVINSERT(unemployment;municipality.in.'Jyvaskyla') 

 

SVSTRATIFIED [PRINT=summary,totals] unemployment2; TOTALS=tot_mv 

 

PRINT (tot_unemploy-tot_mv)/tot_unemploy 

 

 

1.5 Analysis with response data only 

 

 

IMPORT 'C:/Progra~1/Gen22Ed/Data/Province.xls'; \ 

  SHEET='simple RS sample'; ISAVE=ipo 

SVSTRATIFIED [PRINT=summary,totals,means] unemployment; LABELS=municipality; \ 

  NUNITS=32 

 

 

1.6 Stratified random samples – factors and tables 

In this example stratum is imported as a variate (although we could have added 

an exclamation mark after the column heading to force it to be a factor). It can be 

converted to a factor using the GROUPS command, with the option REDEFINE set 

to yes. Alternatively, a different name could have been used, i.e.: 
 GROUPS stratum; FACTOR=stratum2 

The new factor is then used to create the table popsize, which specifies the 

population size in each stratum. 

 

 

IMPORT 'C:/Progra~1/Gen22Ed/Data/Province.xls'; \ 

  SHEET='stratified sample'; ISAVE=ipo 

GROUPS [REDEFINE=yes] stratum 

TABLE [CLASSIFICATION=stratum; VALUES=7,25] popsize 

SVSTRATIFIED [PRINT=summary,totals,means; STRATUM=stratum] unemployment; \ 

  LABELS=municipality; NUNITS=popsize 

 

 

1.7 Practical 

 

 

IMPORT 'C:/Progra~1/Gen22Ed/Data/Province.xls'; \ 

  SHEET='stratified full pop'; ISAVE=ipo 

GROUPS [REDEFINE=yes] stratum 

SVSTRATIFIED [PRINT=summary,totals,means; STRATUM=stratum] unemployment; \ 

  LABELS=municipality 
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2 Estimating totals in stratified random surveys 

2.1 Design-based estimators 

To add labels to the factor, we first create them in a text structure. Note that 

quotation marks are only needed for the label that contains a space. Then the labels 

are added to the factor definition, with option MODIFY=yes to ensure that the 

existing values are retained. 

 

 

SPLOAD 'C:/Progra~1/Gen22Ed/Data/June.gsh'; ISAVE=jpo 

"set factor labels" 

TEXT [VALUES=small,medium,large,'very large',new] labs 

FACTOR [MODIFY=yes;LABELS=labs] strata 

SVSTRATIFIED [PRINT=summary,totals; STRATUM=strata] A1_wheat; LABELS=holding 

 

 

2.2 Ratio estimation 

 

 

SPLOAD 'C:/Progra~1/Gen22Ed/Data/Junemod.gsh'; ISAVE=jpo 

SVSTRATIFIED [PRINT=summary,totals,influence; PLOT=separate; METHOD=separate; \ 

  STRATUM=strata] A1_wheat; X=xa1; LABELS=holding 

"and with compact output, setting the width of the output to give sufficient room" 

OUTPUT [WIDTH=110] 1 

SVSTRATIFIED [PRINT=summary,totals,influence; METHOD=separate; \ 

  STRATUM=strata; COMPACT=yes] A1_wheat; X=xa1; LABELS=holding 

 

 

2.3-2.4 Using restrictions 

In this example we could just restrict the response variable A1_wheat, but often 

easier to restrict all variables, using the pointer created by ISAVE parameter of 

SPLOAD or IMPORT. Remember to remove the restriction when no longer required, 

as it can lead to unexpected results in subsequent programming. 

 

 

SPLOAD 'C:/Progra~1/Gen22Ed/Data/Junemod.gsh'; ISAVE=jpo 

RESTRICT jpo[];CONDITION=holding.NE.343460118 

"first, using default of excluding restricted row totally" 

SVSTRATIFIED [PRINT=summary,totals; METHOD=separate; \ 

  STRATUM=strata] A1_wheat; X=xa1; LABELS=holding 

"now adding it back in to the total" 

SVSTRATIFIED [PRINT=summary,totals; METHOD=separate; \ 

  STRATUM=strata] A1_wheat; X=xa1; LABELS=holding 

RESTRICT jpo[]  "remove restriction" 
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2.5 Practical 

There are several possible ways of doing this in code. Here we use the WHERE 

function to find the row number of holding 343460118, and then use CALCULATE 

to change its stratum. Note that we reordered this factor in Section 2.1, so that its 

levels are not in numerical order, as would usually be the case. 

 

 

SPLOAD 'C:/Progra~1/Gen22Ed/Data/Junemod.gsh'; ISAVE=jpo 

" create new factor " 

TEXT [VALUES=new,small,medium,large,'very large','outlier'] labs2 

VARIATE [VALUES=99,2,3,4,5,6] levs2 

FACTOR [LEVELS=levs2; LABELS=labs2] strata2;VALUES=strata 

" find row number for outlier and set to outlier stratum " 

CALC rowno=WHERE(holding.EQ.343460118) 

CALC strata2$[rowno]=6 

" use TABULATE to check everything has worked " 

TABULATE [PRINT=count; CLASS=strata2,strata] 

SVSTRATIFIED [PRINT=summary,totals; METHOD=separate; STRATUM=strata2] \ 

  A1_wheat; X=xa1; LABELS=holding 

 

 

2.6 The combined ratio estimator 

 

 

SPLOAD 'C:/Progra~1/Gen22Ed/Data/Junemod.gsh'; ISAVE=jpo 

SVSTRATIFIED [PRINT=summary,totals,influence; PLOT=separate; METHOD=separate;\ 

  STRATUM=strata] A11_earlies; X=xa11; LABELS=holding 

SVSTRATIFIED [PRINT=summary,totals,influence; PLOT=single; METHOD=combined;\ 

  STRATUM=strata; COMPACT=yes] A11_earlies; X=xa11; LABELS=holding 

 

 

2.7 Saving and exporting results 

 

 

SPLOAD 'C:/Progra~1/Gen22Ed/Data/Junemod.gsh'; ISAVE=jpo 

SVSTRATIFIED [PRINT=summary,totals; PLOT=*; METHOD=separate; \ 

  STRATUM=strata] A11_earlies; X=xa11; LABELS=holding;\ 

  TOTALS=a11_tot; SETOTALS=a11_se; FITTED=a11_fit; INFLUENCE=a11_inf 

FSPREAD holding,a11_fit,a11_inf 

FSPREAD a11_tot,a11_se 
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3 General Survey Analysis 

3.1 Farm Business Survey datset – merging data 

Since both datasets are in farm order, and all the farms in the Genstat sheet are also 

in the Excel version, the easiest approach is to use SUBSET to remove the extra 

rows from the Excel data. If this were not the case, the JOIN command could be 

used instead. Note that both sheets contain a variate called farm, so we take a 

copy of the Genstat version before overwriting it by reading in the Excel data. 

 

 

SPLOAD 'C:/Progra~1/Gen22Ed/Data/FBS_England.gsh'; ISAVE=gpo 

DUPLICATE farm; farmlist 

IMPORT [EMETHOD=read; EXTRAROW=2] 'C:/Progra~1/Gen22Ed/Data/FBSdata.xls';\ 

  SHEET='FBS'; ISAVE=xlpo 

" remove farms from excel sheet that are not in FBS_England.gsh " 

SUBSET [CONDITION=farm.IN.farmlist] xlpo[] 

" check that lists of farms are correct - this should always be zero " 

DESCRIBE farm-farmlist 

 

 

3.2 Cross-tabulation 

 

 

SPLOAD 'C:/Progra~1/Gen22Ed/Data/FBS_England_merged.gsh'; ISAVE=fpo 

SVTABULATE [PRINT=summary,means; CLASS=sex; STRATUM=stratum; WEIGHTS=weight] \ 

  Y=farmincome; LABELS=farm 

" and with wald stats and influence stats " 

SVTABULATE [PRINT=summary,means,wald,influence; CLASS=sex; STRATUM=stratum; \ 

  WEIGHTS=weight] Y=farmincome; LABELS=farm 

 

 

3.3 Sub-populations 

 

 

SPLOAD 'C:/Progra~1/Gen22Ed/Data/FBS_England_merged.gsh'; ISAVE=fpo 

RESTRICT farmincome; CONDITION=sex.in.'male' 

SVTABULATE [PRINT=summary,means; CLASS=education; STRATUM=stratum; \ 

  WEIGHTS=weight] Y=farmincome; LABELS=farm 

RESTRICT farmincome 
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3.4 Practical 

Note how multiple tables can be displayed together in the same spreadsheet using 

code, but not using the menus. 

 

 

SPLOAD 'C:/Progra~1/Gen22Ed/Data/FBS_England_merged.gsh'; ISAVE=fpo 

RESTRICT farmincome; CONDITION=education.in.'school only' 

SVTABULATE [PRINT=summary,means; CLASS=sex; STRATUM=stratum; WEIGHTS=weight] \ 

  Y=farmincome; LABELS=farm; MEANS=mean_sch; SEMEANS=sem_sch 

RESTRICT farmincome 

RESTRICT farmincome; CONDITION=education.in.'college' 

SVTABULATE [PRINT=summary,means; CLASS=sex; STRATUM=stratum; WEIGHTS=weight] \ 

  Y=farmincome; LABELS=farm; MEANS=mean_col; SEMEANS=sem_col 

RESTRICT farmincome 

FSPREAD mean_sch,sem_sch,mean_col,sem_col 

 

 

3.5 Counts and proportions 

 

 

SPLOAD 'C:/Progra~1/Gen22Ed/Data/FBS_England_merged.gsh'; ISAVE=fpo 

SVTABULATE [PRINT=summary,means,totals; CLASS=sex; STRATUM=stratum; \ 

  WEIGHTS=weight] LABELS=farm 

 

 

3.6 Ratios 

 

 

SPLOAD 'C:/Progra~1/Gen22Ed/Data/FBS_England_merged.gsh'; ISAVE=fpo 

RESTRICT fpo[]; CONDITION=farmincome.GT.0 

SVTABULATE [PRINT=summary,ratios; CLASS=farmsize; STRATUM=stratum; \ 

  WEIGHTS=weight; PLOT=single] Y=subsidy; X=farmincome; LABELS=farm 

SVTABULATE [PRINT=summary,ratios; CLASS=farmsize; STRATUM=stratum; \ 

  WEIGHTS=weight; PLOT=separate] Y=subsidy; X=farmincome; LABELS=farm 

RESTRICT fpo[] 
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3.7 Quartiles and bootstrapping 

 

 

SPLOAD 'C:/Progra~1/Gen22Ed/Data/FBS_England_merged.gsh'; ISAVE=fpo 

SVTABULATE [PRINT=summary,means,quantiles; PLOT=*; CLASS=type; STRATUM=stratum; \ 

  WEIGHTS=weight; PERCENTQUANT=!(5,10,25,50,75,90,95)] \ 

  Y=farmincome; LABELS=farm 

" and with bootstrap limits " 

SVTABULATE [PRINT=summary,means,quantiles; PLOT=*; CLASS=type; STRATUM=stratum; \ 

  WEIGHTS=weight; PERCENTQUANT=!(5,10,25,50,75,90,95); NBOOT=200; METHOD=simple] \ 

  Y=farmincome; LABELS=farm 

 

 

3.8 Multiple-response tables 

Note that there is no separate option for multiple-response factors. Instead the 

pointer to the factors is listed as the CLASSIFICATION setting (or one of the 

settings for two-way tables). 

 

 

IMPORT 'C:/Progra~1/Gen22Ed/Data/FBSmult.gwb'; SHEET='types'; ISAVE=mpo 

FMFACTOR [MRESPONSE=livestock; SUFFIXNULL=0; LABELNULL='null'; CODENULL='-'] \ 

  an1,an2,an3 

" now load the main data sheet and check the farm identifiers match " 

SPLOAD 'C:/Progra~1/Gen22Ed/Data/FBS_England_merged.gsh'; ISAVE=fpo 

DESCRIBE farm-farm3 

SVTABULATE [PRINT=summary,means; PLOT=*; CLASSIFICATION=livestock;\ 

  STRATUM=stratum; WEIGHTS=weight]  Y=farmincome; LABELS=farm 

 

 

3.9 Two-stage samples 

 

 

SPLOAD 'C:/Progra~1/Gen22Ed/Data/Malawi7.gsh'; ISAVE=mpo 

SVTABULATE [PRINT=summary,totals,influence; PLOT=*; SAMPLINGUNITS=EPA; CLASS=ADD;\ 

  STRATUM=ADD; WEIGHTS=weight; FPCOMIT=yes]  Y=GTIS_hh 

" now specifying population sizes " 

TABLE [CLASS=ADD; VALUES=27,9,26,32,33,33,14] nEPA 

SVTABULATE [PRINT=summary,totals; PLOT=*; SAMPLINGUNITS=EPA; CLASS=ADD;\ 

  STRATUM=ADD; WEIGHTS=weight; NUNITS=nEPA; FPCOMIT=no]  Y=GTIS_hh 
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4 Weights and imputation 

4.1-4.3 Creating and modifying survey weights 

 

 

IMPORT 'C:/Progra~1/Gen22Ed/Data/Juneresponse.gwb'; SHEET='responses'; ISAVE=rpo 

IMPORT 'C:/Progra~1/Gen22Ed/Data/Juneresponse.gwb'; SHEET='nfarm'; ISAVE=npo 

 

SVWEIGHT [PRINT=summary,strat,psus; STRATUM=strata; NUNITS=nfarm] 

OUTWEIGHTS=weights 

 

" 4.2 practical " 

SVTABULATE [PRINT=summary,totals,influence; CLASS=strata; STRATUM=strata; \ 

  WEIGHTS=weights]  Y=A1_wheat; LABELS=holding 

 

" 4.3 modifying " 

SVREWEIGHT [PRINT=summary; METHOD=*; WEIGHTS=weights; OUTWEIGHTS=weightsB; \ 

  STRATUM=strata; LABELS=holding] berror 

 

 

4.4 Modifying weights for outliers 

 

 

IMPORT 'C:/Progra~1/Gen22Ed/Data/Juneresponse.gwb'; SHEET='responses'; ISAVE=rpo 

IMPORT 'C:/Progra~1/Gen22Ed/Data/Juneresponse.gwb'; SHEET='nfarm'; ISAVE=npo 

 

SVWEIGHT [PRINT=summary,strat,psus; STRATUM=strata; NUNITS=nfarm] \ 

  OUTWEIGHTS=weights 

 

RESTRICT A1_wheat; strata.NI.'new' 

SVTABULATE [PRINT=summary,ratios,influence; CLASS=strata; STRATUM=strata; \ 

  WEIGHTS=weights]  Y=A1_wheat; X=xa1; LABELS=holding 

RESTRICT A1_wheat 

 

SVREWEIGHT [PRINT=summary; METHOD=*; WEIGHTS=weights; OUTWEIGHTS=wt_exoutlier; \ 

  STRATUM=strata; OUTSTRATUM=strat_exoutlier; LABELS=holding] 343460118; NEW=1 

 

RESTRICT A1_wheat; strata.NI.'new' 

SVTABULATE [PRINT=summary,ratios; CLASS=strat_exoutlier; STRATUM=strat_exoutlier; \ 

  WEIGHTS=wt_exoutlier]  Y=A1_wheat; X=xa1; LABELS=holding 

RESTRICT A1_wheat 
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4.5 Calibration weighting 

 

 

IMPORT 'C:/Progra~1/Gen22Ed/Data/FBSmult.gwb'; SHEET='crops'; ISAVE=mpo 

SPLOAD 'C:/Progra~1/Gen22Ed/Data/FBS_England_merged.gsh'; ISAVE=fpo 

" check farm numbers match between datasets " 

DESCRIBE Farm-farm 

" initial analysis " 

SVTABULATE [PRINT=summary,totals; STRATUM=stratum; WEIGHTS=uncalibrated_wt] \ 

  Y=osr; LABELS=holding 

SVCALIBRATE [PRINT=summary; WEIGHTS=uncalibrated_wt; OUTWEIGHTS=cal_wt; \ 

  METHOD=linear; TCONSTRAINTS=61655,463935; X=*,osr; LOWER=0.1; UPPER=10; \ 

  PLOT=weights] 

 

 

4.6 Calibration by groups 

 

 

IMPORT 'C:/Progra~1/Gen22Ed/Data/FBSmult.gwb'; SHEET='crops'; ISAVE=mpo 

SPLOAD 'C:/Progra~1/Gen22Ed/Data/FBS_England_merged.gsh'; ISAVE=fpo 

" check farm numbers match between datasets " 

DESCRIBE Farm-farm 

SVCALIBRATE [PRINT=summary; WEIGHTS=uncalibrated_wt; OUTWEIGHTS=cal_wt; \ 

  METHOD=linear; TCONSTRAINTS=61655,463935; X=*,osr; LOWER=0.1; UPPER=10; PLOT=*] 

 

 

4.7 Practical 

 

 

IMPORT 'C:/Progra~1/Gen22Ed/Data/June_calibration.gwb';sheet='totals' 

IMPORT 'C:/Progra~1/Gen22Ed/Data/June_calibration.gwb';sheet='response' 

 

" ratio analysis for comparison " 

SVSTRATIFIED [PRINT=summary,totals; METHOD=separate; STRATUM=strata; \ 

  SAVESUMMARY=no] A1_wheat; X=xa1; LABELS=holding; NUNITS=nhold; \ 

  XTOTALS=totxa1; TOTALS=totrat ;setot=serat 

 

SVCALIBRATE [PRINT=summary; WEIGHTS=weights; OUTWEIGHTS=calwt; METHOD=linear;\ 

  TCONSTRAINTS=nhold,totxa1; X=*,xa1; STRATUM=strata] Y=A1_wheat; FITTED=a1fit 

 

SVTABULATE [PRINT=summary,totals; CLASS=strata; STRATUM=strata; WEIGHTS=calwt] \ 

  Y=A1_wheat; TOTALS=totcal; SETOTALS=secal 

 

SVTABULATE [PRINT=summary,totals; CLASS=strata; STRATUM=strata; WEIGHTS=calwt] \ 

  Y=A1_wheat; TOTALS=totcalfit; SETOTALS=secalfit; FIT=a1fit 

 

PRINT totrat,totcal,totcalfit,serat,secal,secalfit 
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4.8 Hot-deck imputation for missing values 

 

 

SPLOAD 'C:/Progra~1/Gen22Ed/Data/FBS_England_merged.gsh'; ISAVE=fpo 

 

SVHOTDECK [PRINT=summary,list; METHOD=hotdeck; DMETHOD=minimax; SEED=0] \ 

  subsidy20mv; NEWSTRUCTURE=random 

 

CALCULATE absfarmincome=ABS(farmincome) 

 

SVHOTDECK [PRINT=summary,list; METHOD=hotdeck; DMETHOD=minimax; SEED=0;\ 

  DVARIABLES=type,absfarmincome; DRANGES=*,*] subsidy20mv; NEWSTRUCTURE=nearest; \ 

  OVERWRITE=no 

 

" and imputing 100 at random to check " 

SVHOTDECK [PRINT=summary,check,monitoring; METHOD=hotdeck; DMETHOD=minimax;\ 

  SEED=0; DVARIABLES=type,absfarmincome; DRANGES=*,*; IMPUTE=100] subsidy20mv 

 

 

4.9 Model-based imputation for missing values 

 

 

SPLOAD 'C:/Progra~1/Gen22Ed/Data/FBS_England_merged.gsh'; ISAVE=fpo 

 

" fit model with separate slopes for each farm type " 

MODEL subsidy20mv; RESIDUALS=res; FITTED=fits 

FIT [PRINT=model,summary,estimates; CONSTANT=estimate; FPROB=yes; TPROB=yes] \ 

  type*absfarmincome 

" check residuals " 

RCHECK [RMETHOD=deviance; GRAPHICS=high] residual; composite 

" plot relationships " 

RGRAPH [GRAPHICS=high]  

" then use to form imputed values, taking residual at random from within farm type" 

SVHOTDECK [PRINT=summary,list; METHOD=modelbased; DMETHOD=minimax; SEED=0;\ 

  DVARIABLES=type; DRANGES=*] subsidy20mv; NEWSTRUCTURE=regression; OVERWRITE=no 

 

" alternative method: this takes an observation at random from those with fitted  

  values (see MODEL statement above) within 100 of the nearest fit. Note that  

  THRESHOLD is set to -100 (a negative distance indicating it is an absolute value)  

  and DRANGES is set to 1, to prevent any scaling "  

SVHOTDECK [PRINT=summary,list,monitoring; METHOD=hotdeck; DMETHOD=minimax; SEED=0;\ 

  DVARIABLES=fits; DRANGES=1; THRESHOLD=-100] subsidy20mv; NEWSTRUCTURE=regfit;\ 

  OVERWRITE=no 
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5 Progamming Genstat for surveys 

Since the main chapter lists the commands for most sections, only the practicals 

are shown here. 

 

5.2 Practical 

 

 

SPLOAD 'C:/Progra~1/Gen22Ed/Data/FBS_England_merged.gsh'; ISAVE=fpo 

SVTABULATE [PRINT=summary,totals,influence,psusummary,wald; CLASS=sex; \ 

  STRATUM=stratum; WEIGHTS=weight] Y=farmincome; LABELS=farm; TOTALS=total;\ 

  SETOTAL=se_total; WALD=test_stats 

 

 

5.4 Practical 

 

 

SPLOAD 'C:/Progra~1/Gen22Ed/Data/FBS_England_merged.gsh'; ISAVE=fpo 

FOR d=sex,type,tenancy ;mtab= meansex,meantype,meantenancy 

  SVTABULATE [PRINT=summary,means,influence; CLASS=d; STRATUM=stratum;\ 

    WEIGHTS=weight; NINFLUENCE=10; FPCOMIT=no]  Y=farmincome; LABELS=farm; \ 

    MEANS=mtab 

ENDFOR 
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6 Survey design and sampling  

6.1 Selecting random samples 

 

 

SPLOAD '%GENDIR%/Data/Junemod.gsh'; ISAVE=jpo 

SET [SEED=6510] 

SVSAMPLE [PRINT=summary; SAMPLE=sampno; NUNITS=19156; NSAMPLE=0.1; METHOD=sample;\ 

  NUMBERING=population] OLDVECTOR=holding; NEWVECTOR=sampled_holding 

FSPREADSHEET  sampno,sampled_holding 

 

 

6.2 Selecting stratified random samples 

 

 

SPLOAD '%GENDIR%/Data/Junemod.gsh'; ISAVE=jpo 

SET [SEED=6510] 

"Survey Sampling" 

TABLE [CLASS=strata; VALUES=100,200,500,500,500] nsample; DECIMALS=0 

SVSAMPLE [PRINT=summary; NSAMPLE=nsample; METHOD=sample; NUMBERING=population]\ 

 OLDVECTOR=holding,parish,xa1,xa10,strata; NEWVECTOR=Holding,Parish,Xa1,Xa10,Strata 

 

job 'structures not defined' 

TEXT [VALUES=new,small,medium,large,'very large'] Strata 

VARIATE npop,nsamp; VALUES=!(2613,5851,5479,3074,2139),!(100,200,3(500)) 

SVSAMPLE [PRINT=sum; STRATUMFACTOR=STRATUM; SFLAB=Strata; NUNITS=npop;\ 

  NSAMPLE=nsamp; SEED=5642; METHOD=pop; SAMPLE=SAMPLED] 

FSPREAD STRATUM,SAMPLED 

"use tabulate to check" 

TABULATE [PRINT=nob,total,mean; CLASS=STRATUM; MARGIN=yes] SAMPLED 

 

 

6.3 Cluster and multistage samples 

 

 

SPLOAD '%GENDIR%/Data/Junemod.gsh'; ISAVE=jpo 

SET [SEED=6510] 

SVSAMPLE [PRINT=summary; SAMPLE=stage1; NUNITS=19156; NSAMPLE=0.1;\ 

  METHOD=population; NUMBERING=population; CLUSTER=parish]  

 

TABULATE [PRINT=*; CLASSIFICATION=parish; MARGINS=no] stage1; NOBS=tnobs;\ 

  MEANS=tstage1 

CALC psample2=tstage1*0.4 

CALCULATE nsample2=CEILING(psample2*tnobs) 

"alternatively this sets proportions to 0.99 when tnobs equals 1" 

CALC psample2b=tstage1*(0.4+0.59*(tnobs.EQ.1)) 

FSPREAD tnobs,tstage1,psample2,nsample2,psample2b 

 

SVSAMPLE [PRINT=summary; SAMPLE=stage2; NSAMPLE=nsample2; METHOD=population;\ 

  NUMBERING=population] parish,holding; NEWVECTOR=Holding,Parish 

FSPREAD holding,parish,stage1,stage2 
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7 Regression for surveys 

7.2 Linear regression for surveys 

 

SPLOAD '%GENDIR%/Data/FBS_Regression.gsh'; ISAVE=fpo 

 

XAXIS 1;MARK=1000 

DGRAPH [WINDOW=5;KEYWINDOW=0;TITLE='subsidy v farmarea'] subsidy; farmarea 

 

YAXIS 3;TRANSFORM=log10 

XAXIS 3;TRANSFORM=log10;MARK=!(1,10,100,1000) 

DGRAPH [WINDOW=3;KEYWINDOW=0;TITLE='subsidy v farmarea (log scale)'; \ 

       SCREEN=keep] subsidy+1; farmarea; PEN=type 

 

CALC logsubsidy=LOG10(subsidy+1) 

CALC logfarmarea=LOG10(farmarea) 

 

RESTRICT logsubsidy;CONDITION=type.ni.!t(Pigs,Poultry,Horticulture)  

SVGLM [PRINT=model,estimates,wald,pred; DISTRIBUTION=normal; LINK=identity; \ 

 TERMS=logfarmarea; WEIGHTS=weight; CIPROB=0.95; PFACTOR=logfarmarea; \ 

     PLEVELS=!(1,1.5...3)] logsubsidy;PRED=pr;LOWPRED=lpr;UPPRED=upr 

 

7.3 Generalized linear models for surveys 

 

SPLOAD '%GENDIR%/Data/FBS_Regression.gsh';ISAVE=ipo 

 

CALC zerosubs=subsidy.EQ.0 

CALC logfarmarea=LOG10(farmarea) 

 

RESTRICT zerosubs,logfarmarea;CONDITION=type.in.!t(Pigs,Poultry,Horticulture) 

 

SVGLM [PRINT=model,estimates,wald,pred; DISTRIBUTION=binomial; LINK=logit; 

FACTORIAL=9;\ 

 CONSTANT=estimate; DISPERSION=*; TERMS=logfarmarea+type_pph; 

STRATUMFACTOR=mergedstratum;\ 

 WEIGHTS=weight; METHOD=simple; NBOOT=200; SEED=0; CIPROB=0.95; 

PFACTORS=logfarmarea,type_pph;\ 

 PLEVELS=!(0.5,1...2),*; PTERM=logfarmarea,type_pph; SEED=742002] zerosubs; 

NBINOMIAL=1 

RESTRICT zerosubs,logfarmarea 

 

7.4 Fitting unweighted models 

 

SPLOAD '%GENDIR%/Data/FBS_Regression.gsh';ISAVE=ipo 

 

CALC zerosubs=subsidy.EQ.0 

CALC logfarmarea=LOG10(farmarea) 

 

RESTRICT zerosubs,logfarmarea;CONDITION=type.in.!t(Pigs,Poultry,Horticulture) 

MODEL [DISTRIBUTION=binomial; LINK=logit; DISPERSION=1] zerosubs; NBINOMIAL=1 

FIT [PRINT=model,summary,estimates; CONSTANT=estimate; FPROB=yes; TPROB=yes; \ 

  FACT=9] logfarmarea 
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ADD [PRINT=acc;FPROB=yes] type_pph 

PREDICT [PRINT=description,predictions,se; COMBINATIONS=estimable; \ 

  BACKTRANSFORM=link; ADJUST=marginal] type_pph; LEVELS=* 

 

7.6 Practical 

SPLOAD '%GENDIR%/Data/FBS_Regression.gsh';ISAVE=ipo 

 

SVTABULATE [PRINT=summary,means,influence,wald; CLASS=type; STRATUM=mergedstratum;\ 

   WEIGHTS=weight]  Y=farmincome; LABELS=farm 

SVGLM [PRINT=model,estimates,wald,predictions; TERMS=type; \   

   STRATUMFACTOR=mergedstratum; WEIGHTS=weight; PFACTORS=type] farmincome 
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